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Abstract—Modern heterogeneous embedded platforms, com-
posed of several digital signal, application specific and general
purpose processors, also include reconfigurable devices support-
ing partial dynamic reconfiguration. These devices can change
the behavior of some of their parts during execution, allowing
hardware acceleration of more sections of the applications.
Nevertheless, partial dynamic reconfiguration imposes severe
overheads in terms of latency. For such systems, a critical part
of the design phase is deciding on which processing elements
(mapping) and when (scheduling) executing a task, but also how
to place them on the reconfigurable device to guarantee the
most efficient reuse of the programmable logic. In this paper we
propose an algorithm based on Ant Colony Optimization (ACO)
that simultaneously executes the scheduling, the mapping and the
linear placing of tasks, hiding reconfiguration overheads through
pre-fetching. Our heuristic gradually constructs solutions and
then searches around the best ones, cutting out non-promising
areas of the design space. We show how to consider the partial
dynamic reconfiguration constraints in the scheduling, placing
and mapping problems and compare our formulation to other
heuristics that address the same problems. We demonstrate
that our proposal is more general and robust, and finds better
solutions (16.5% in average) with respect to competing solutions.

I. INTRODUCTION

Heterogeneous Multiprocessor Systems-on-Chip (MPSoCs)

are the de facto standard for modern embedded system design.

They are usually composed of several general purpose, digital

signal and application specific processors. To further enhance

their performance, they often integrate reconfigurable devices,

which allows implementing customized hardware acceleration

for some sections of the target applications. The latest Field

Programmable Gate Arrays (FPGAs) [1] support Partial Dy-

namic Reconfiguration (PDR). PDR allows changing portion

of their configuration, while the rest of the device remains

active, enabling the reuse of the device area to accelerate

even more sections of an application. Nevertheless, its support

imposes severe constraints and overheads, especially in terms

of reconfiguration latencies and processing elements to drive

the reconfiguration. Furthermore, accurate placement of the

hardware components is critical in obtaining efficient utiliza-

tion of the available reconfigurable area.

When developing a heterogeneous MPSoC, the designer

aims at finding the best assignments for the tasks of the

application to the available processing elements, minimizing

the program execution time and, thus maximizing the perfor-

mance. The designer determines when (scheduling) and where

(mapping) the tasks should start their execution, depending on

their resource requirements and data dependencies. However,

scheduling and mapping are NP-complete problems [2]. PDR

support with the related overheads increases the size of the

exploration space, thus making exact algorithm unpractical.

Consequently, researchers employed heuristics based on Ge-

netic Algorithms [3], Simulated Annealing, Tabu Search [4],

[5], Kernighan-Lin [6] for obtaining sub-optimal solutions to

these problems in reasonable times. Ant Colony Optimization

(ACO) [7], [8], [9] is another heuristic approach that has been

recently applied to these problems with good results. However,

the majority of the proposed formulations try to separately

solve the various problems. If they simultaneously address the

different problems, instead, they either are limited to few tasks

and few implementations points [10] or do not consider PDR

and placing [9].

This paper proposes an ACO-based heuristic algorithm that

overcomes most of these limitations. In particular:

1) it simultaneously performs scheduling, mapping and

placing of a task graph on a complex and heterogeneous

MPSoC with reconfigurable devices that support PDR;

2) it can find sub-optimal solutions independently from

the fact that a task can execute on different resources

or requires the availability of multiple resources for

execution;

3) it accounts for the reconfiguration constraints and over-

heads, such as the reconfiguration latency, the presence

of a reconfiguration port and the execution of the

reconfiguration task on a general purpose processor,

potentially exploiting configuration pre-fetch.

The paper proceeds as follows. Section II introduces the

problem addressed in this work and ACO. Section III details

the formulation proposed in this paper. The formulation is

then compared with existing work in Section IV. Section V

presents the experimental evaluation, comparing our algorithm

to previous heuristics dealing with the same problems. Finally,

Section VI concludes the paper.



Fig. 1: The model of the target architecture

II. BACKGROUND

This section introduces the problem addressed in this work

through a motivating example and the ACO heuristic used to

perform the design space exploration.

A. Definitions and Motivating Example

This work targets a MPSoC composed of multiple general

purpose processors (not necessarily with the same instruction

sets), digital signal processors and FPGA devices that sup-

port one-dimensional reconfiguration. An example of such a

MPSoC is shown in Figure 1.

FPGAs can be described as a matrix of Configurable

Logic Blocks (CLBs), interconnected through switches, that

perform the programmed functions. PDR is one of the most

powerful mechanisms to configure modern FPGAs: it allows

reconfiguring only a portion of the system without interrupting

the operations in the other parts. FPGAs with such features

are, for example, the devices of the Xilinx Virtex family.

The Virtex-II Pro and the Virtex-4 devices, respectively have

a basic reconfiguration block of an entire column of CLBs

or of a sub-matrix of 16x1 CLBs. Newer solutions, such as

the Virtex 5, 6 and 7, support the same features, and only

differ for the reconfiguration granularity. Reconfiguration time

is proportional to the number of CLBs reconfigured. PDR is

performed by accessing a specific reconfiguration port called

Internal Configuration Access Port (ICAP). Some devices

even integrate hard-core processors that can drive the self-

reconfiguration, and heterogeneous elements like multipliers

and memories. Some versions of these FPGAs even host

multiple (up to 2) ICAPs and several (up to 4) hard-core

processors, such as the Power PC 405. To reconfigure such

devices, a processing element fetches the new configuration for

some of the CLBs from an external memory, and then sends it

to the ICAP. After the reconfiguration time, the reconfigured

hardware can then receive data and can start operating.

Figure 2 shows the Direct Acyclic Graph (DAG) that

represents the data dependencies among the tasks. Suppose

that some of these tasks can run, with different performances,

on the various processing elements available on the target

platform. There are specific software implementations of the

task for the ARM, the DSP, the PowerPC, and, possibly, mul-

tiple hardware implementations for the FPGA with different

area/performance trade-offs. The objective is obtaining the

minimum execution time (maximum performance) for this ap-

plication on the target platform. There are multiple problems to

solve. The designer must decide on which processing elements

Fig. 2: Sample task graph

TABLE I: Distribution of the execution times and area occu-

pation on the different resources of the architectures for the

example task graph. 4 columns are available on the FPGA.

Task ARM DSP PPC HW T. HW A.

A 8 6 2 1 1

B 5 6 10 2 2

C 4 4 6 1 2

D 8 7 2 3 1

E 10 8 3 1 1

F 2 3 7 1 2

he should map the tasks. The designer should also decide in

which order the system should start the tasks, considering

their dependencies. Suppose that, for performance reasons,

the designer mapped two potentially parallel tasks (A and B)

on the same resource. Scheduling A before B makes possible

launching C without waiting for B completion. Then, consider

the possibility that some tasks have a promising hardware

implementation, and the designer would like to run them on the

FPGA. If the FPGA does not support PDR, there is a constraint

on the available area. She or he can allocate only a few of the

tasks on the FPGA, and a careful selection is required to obtain

the best application execution time. However, if the FPGA

supports partial dynamic reconfiguration, more possibilities for

hardware implementation can be exploited, but new constraints

on the placing and on the reconfiguration overheads appear,

making the decision process even more complex. Consider the

case of columnar (linear) placement and suppose that tasks A,

B, C and E are selected to run on the FPGA. Resource require-

ments and performance of the tasks are reported in Table II.

Figure 3 shows some possible placings for the example. In the

figure, columns represent the physical columns available on

the device, and rows represent the passing of time. As shown

in i), if A, B and E are placed in that order, C can only start at

time 4, since only at that time 2 consecutive columns become

available. If A and E are placed before B, instead, there are

2 consecutive columns for task C already available at time

2, as shown in ii. In ii), however, reconfiguration overheads

are not considered. On a FPGA supporting PDR, the situation

is more similar to the one depicted in iii). After A and E

end, reconfiguration of columns 0 and 1 for C (rC) starts.

To perform reconfiguration, a processor is needed to fetch

the configuration from memory, and to send it to the ICAP.

Thus, both the processor and the ICAP are occupied for the

reconfiguration time. Furthermore, the columns used by task C

are also blocked during reconfiguration time, because they are

being loaded with the new function. They will be free again

only at the end of task C.

This example shows how the spawning of a hardware task

on the FPGA can be considered as a combination of a recon-



Fig. 3: Resources reuse on FPGA supporting columnar re-

configuration. A) shows a basic placing, B) shows a more

effective placing, C) represents the real case for B) when

partial dynamic reconfiguration is involved.

figuration and an execution component. The reconfiguration

component actually represents the reconfiguration overhead

and, to be performed, requires a set of resources, composed of

a processing unit to drive the reconfiguration, the configuration

port, and the programmable blocks. The execution part must

start only when the data dependencies of the tasks have been

satisfied (i.e. all the predecessors have ended and the data

required by the tasks are ready). In some cases, instead, it is

possible to anticipate the reconfiguration, if the required set

of resources (processor, configuration port and columns) is

available before the dependencies have been satisfied. So, it is

not necessary to wait for the termination of the predecessors

to start the reconfiguration of a task. The reconfiguration

component leaves the reprogrammed columns unavailable until

the termination of the execution part. The only constraint is

that no other reconfigurations may happen on those columns

until the related execution component terminates. However,

the execution component does not necessarily need to start

right after reconfiguration. This situation is shown in Figure

3, iv): reconfiguration of D (rD) can start before the end of B,

and D can start its execution as soon as B is terminated. In

this way, the reconfiguration overheads for D are completely

hidden. This technique is called configuration pre-fetch [11],

and it is possible only with adequate placing and scheduling.

Efficient solutions can be found only by analyzing the

scheduling, the mapping and the placing of the tasks at the

same time and effective methods to search in the design space

are definitively required. For these reasons, this work proposes

an efficient heuristic, based on ACO, to solve the combined

scheduling, mapping and placing problem for heterogeneous

MPSoCs augmented with FPGAs that support PDR. Our

algorithm performs hardware-software partitioning on com-

plex architectural models that feature many heterogeneous

processing elements, considers the reconfiguration and placing

constraints, and returns feasible scheduling, mapping and

placing of the initial task graph.

B. Ant Colony Optimization

Ant Colony Optimization (ACO) is a heuristic search

methodology originally introduced by Dorigo et al. [12] with

the Ant System (AS). ACO mimics the cooperative behavior of

ants when searching for food. Ants start from their nest going

in random directions, depositing a trail of pheromone that

motivates other ants to follow the same path. The ants moving

on the shortest paths will reach the food and come back faster

than the others, proportionally depositing more pheromones

and reinforcing the trails. As time passes, the oldest trails

evaporate, and, at some point, only the shortest path will

remain with a strong reinforcement. ACO takes inspiration

from this behavior. Several agents are launched to explore the

search space, taking a sequence of decisions to find a solution.

At each step, an agent only takes admissible moves. It then

reinforces each decision proportionally to the quality of the

resulting solution. The collaboration of multiple agents allows

to concentrate the exploration only on the promising zones

of the search space (global heuristic). For each choice, the

agents also exploit local heuristics that are directly related to

the problem.

AS has initially been applied to the Traveling Salesman

Problem (TSP). In the TSP, the cost of each tour is the sum

of the costs of each arc chosen to go from the first vertex to

the last one. On the TSP, AS works as follows:

1. Initially associate each arc with a pheromone trail τij .

2. Put m ants on an initial vertex.

3. Each ant constructs its own tour, executing a probability

choice at each step from the set of allowed c and memorizing

the visited cities. The probability of going from vertex i to j
is calculated as:

pij =
[τij ]

α ∗ [ηij ]
β

∑
l∈Ni

[τil]α ∗ [ηil]β

where Ni is the set of admissible choices for the ant at vertex

i, η is the local heuristic that influences the choice of the ant

on the next arc to explore starting from the current node, τ
is the pheromone trail, while α and β controls the weight of

the local heuristic and the global heuristic (pheromones). The

TSP formulation uses a very simple “greedy” local heuristic

(the inverse of the cost of an arc), which guides the ants to the

most promising solutions since the beginning of the search.

4. Evaluation of the quality of the result.

5. Update of the the pheromones, firstly evaporating the

trails on all the arcs and then incrementing it of a factor

proportional to the quality of the result found.

6. If goal conditions are not met, go to step 2.

The pheromones update formula is the following:

τij = (1− ρ) ∗ τij +

m∑

l=l

∆τ
(l)
ij

where 0 < ρ < 1 is the evaporation rate and the deltas are

calculated as∆τ
(l)
ij = Q/L, if the arc ij was in the solution, 0

if not, with Q as pheromone delivery rate and L representing

the cost of the result. Evaporation removes, after each iteration,

some pheromones on all the arcs. This allows forgetting arcs

explored and never revisited, avoiding early convergence to

local minima. Termination criteria of the search can be a

maximum number of generations or convergence to a sub-

optimum.



III. PROPOSED ALGORITHM

In contrast with many formulations for mapping and

scheduling problems, our algorithm starts from the concept

that it is actually performing a heuristic scheduling. In many

scheduling approaches, heuristics simply optimize the priority

function of a classic list formulation. In other cases, list

scheduling is used after the heuristic search to evaluate the

quality of the mapping chosen for the tasks. List scheduling

exploits a heuristic priority function also in these cases. Our

ACO formulation, instead, focuses on the concept that at every

decision point an ant decides which task to schedule and where

to map it. Thus, every ant constructs step by step the mapped

and scheduled task graph, choosing one node after the other.

The basic idea comes from [13], which applies ACO to the

Resource Constrained Scheduling Problem (RCSP). Objective

of such work is to find the best schedule (shortest execution

time) for a series of dependent jobs (described through a

DAG) that required pre-determined sets of resources. Each

ant constructs a complete schedule in N steps, where N is

the number of jobs, following a Serial Generation Scheme

(SGS). At (SGS). At each step, the ant selects a new job from a

candidate list. The candidate lists includes all the jobs that have

satisfied dependence constraints, and for which all the required

resources are available at the current timeframe. When a job

is selected, the availability of the related resources is updated

to the current scheduling time plus the execution time of

the selected job. With appropriate choices, SGS can always

reach the optimal solution for the RCSP [14]. Following

the ACO approach, each ant generates its own scheduling.

The results (overall execution times) are then evaluated, and

the pheromone matrix (which stores the feedback about the

choice of a node at a scheduling step, thus has size NxN ) is

updated following the standard update policies. In subsequent

iterations, the ants will converge to the shortest schedules.

We adapted this formulation to perform scheduling, map-

ping and partial dynamic configuration. In doing so, we

introduced support for multi-stage decisions (that reduce the

exploration space) and support for unknown job duration (re-

configuration tasks locks the columns until the execution tasks

are scheduled). We present our algorithm with an example.

A. Algorithm presentation

Consider the sample task graph of Figure 2 and the target

architecture of Figure 1. Table II reports the execution time

the tasks on the processing elements of the architecture, the

performance of their hardware implementation and the area

(columns) occupied on the FPGA. The numbers are simplified

for the example, but maintains realistic ratios. Figure 4 shows

the steps performed by an ant to schedule, map and place the

sample task graph on the target architecture with support for

self-reconfiguration.

In our formulation, an ant starts selecting tasks from those

that have not dependencies. However, as previously discussed,

tasks that can execute on the FPGA are decoupled in reconfig-

uration and execution tasks. Reconfiguration tasks are special

tasks, that do not depend from any other tasks. However,

TABLE II: Distribution of the execution times and area

occupation on the different resources of the architectures for

the example task graph. 4 columns are available on the FPGA.

Task ARM DSP PPC HW T. HW A.

A 8 6 2 1 1

B 5 6 10 2 2

C 4 4 6 1 2

D 8 7 2 3 1

E 10 8 3 1 1

F 2 3 7 1 2

the related execution tasks directly depends on them. They

also require the availability of a set of resources: a processor,

the ICAP and the columns of the FPGA. To simplify the

example, we use a reconfiguration time of 1 time unit for

each column (space unit) occupied by a task. Thus, at step (i)

of our example, all the reconfiguration tasks are schedulable,

because at the beginning all the required units are free. Task A,

B and E are also schedulable, because they are not dependent

on any other task. Nevertheless, they conceptually cannot run

on the FPGA, because a reconfiguration is required. This is

only a requirement for the formalization of the algorithm,

because our approach also consider the possibility to start with

a predetermined configuration for the FPGA.

To deal at the same time with the mapping, the scheduling

and the placing problem, the ant would have to choose among

all the possible placing of each reconfiguration task, and

among all the possible implementations for all the other tasks,

with the exception of the FPGA. Since this would generate a

very large set of admissible moves, we decoupled the decision

process in two stages. In the first stage, the ant only chooses

which task to schedule among the reconfiguration tasks and

the other available tasks (not running on the FPGA). In the

second stage, it either decides the placing (if a reconfiguration

task is selected) or the mapping (if any other task is selected).

In subsequent steps, if a reconfiguration task was selected, the

related execution task will still appear in the list of admissible

selections. If the related execution task is selected in the first

stage, in the second stage it will be simply set as executed on

the previously decided FPGA columns.

Suppose that the ant selects reconfiguration of A (rA) as the

first task to schedule. The second stage of the decision process

determines on which columns the task should be placed and

which processors can drive the reconfiguration. Supposing that

only the processor in the FPGA can drive the reconfiguration,

we can place A on column 0, 1, 2, or 3 using PPC0 (first

column of “options” in the figure) or PPC1 (second column of

“options”). Note that there is only one ICAP, so it is implicitly

used for any of the choices. However, at this point, the FPGA

has not been used yet, and reconfiguration is not really needed

(the system can be set up to start with an initial configuration).

So, the ant does not occupy all the processors, but simply

set the selected column (C0) as blocked. At step ii), since

only one column is currently unavailable, and the hardware

implementations of all the tasks occupy 2 or fewer columns,

all the remaining reconfiguration tasks can be scheduled, again

with the execution for tasks A, B and E. Anyhow, the ant

selects the execution task for A. Consequently, in the second



Fig. 4: An iteration of our ACO algorithm with support for self-reconfigurable devices

stage of the decision process, it is placed on the column

that was already blocked. C0 will be now available again

for other tasks starting from time 1. The execution of Task

A satisfies the dependencies of Task C, which thus becomes

a candidate for execution. The ant, at step iii), chooses it.

Since no reconfiguration of C has been scheduled before,

the second stage of the decision only involves the software

implementations. C is scheduled on the ARM at time 1,

and automatically rC is removed from the set of possible

scheduling candidates. At step iv) the reconfiguration task

for B is chosen. No columns are currently blocked by other

reconfigurations, so the ant has all the options to place B,

which has size 2: columns 0-1, 1-2, or 2-3. The ant can also

choose if reconfiguration can be driven by PPC0 or PPC1.

Driven by a local heuristic, which motivates the ant to choose

the column which allows to start the task as soon as possible,

and by past ants through the global pheromones matrix, B

is placed on column 2-3. Again, no reconfiguration time is

considered, since those column where not used before.

At step v), column 2 and 3 are blocked. However, it is

possible to schedule reconfiguration of tasks of size 1 (D

and E) and of size 2 (F, but only starting from the end of

A). The ant chooses to schedule rE, and the second stage

can place it on column 0 (but with reconfiguration), or on

column 1 (without actual reconfiguration) on PPC0 or PPC1.

The heuristic chooses column 1, and sets it as used. At step vi)

the execution task for B is selected, and so the time at which

columns 2 and 3 becomes again available again is set to 2.

At step vii), the execution task for D becomes available, but

the ant selects its reconfiguration task, rD. Feasible placings

at this round are column 0, 2 and 3. Again, the ant can also

choose which processor will drive the reconfiguration. This

time, however, all the feasible columns were already occupied

by other tasks, so reconfiguration has an actual duration of

1 unit of time. The ant chooses to map the reconfiguration

on column 0. This is the most convenient column (1 is not

available, while in 2 and 3 the reconfiguration would start at

time 2). The reconfiguration is then scheduled on the set of

resources composed by the PPC0 (driving the reconfiguration),

the ICAP (reconfiguration port) and the target column at time

1. Reconfiguration of D has not any data dependencies from B

(only the execution has) so it can be scheduled as soon as the

three required resources are available. After reconfiguration,

column 0 remains locked until execution of D is scheduled.

Execution of D is scheduled after the end of the execution

of B, and the net effect is that the reconfiguration has been

pre-fetched without extending the schedule. At step viii) and

ix) the execution tasks of E and D are scheduled. At step

x), execution of F becomes available, but rF is instead chosen.

Since no columns are blocked by another reconfiguration task,

the ant has all the possible placings. However, starting to place

the task in column 0, would mean to delay it until time 5. The

heuristic then opts to reconfigure columns 1 and 2. The task

has size 2, so reconfiguration lasts on the driving processor,

the ICAP and the 2 columns, for 2 units of time. At step xi)

the only remaining task to schedule is the execution of F. The

ant chooses it, but the scheduler sees that it has to be started

at the end of D for data dependencies. Thus, at time slot 5

the two columns are already loaded with the new task, but

they are not used for execution since dependencies are not yet

satisfied. In this case, reconfiguration pre-fetch also results in

an unused time slot.

The example also identifies the interesting aspects of the

algorithm: it performs mapping, scheduling and placing at

the same time, constructing, step by step, only complete and

feasible solutions and exploring around them. The scheduling

mechanism supports resources for which availability time is

not known, operations (tasks) which can run only on specific

resources (i.e. only some processors can drive reconfiguration)

and operations which requires a set of resources to run

(the reconfiguration tasks need a set of resources to run). It

naturally supports the limitation due to a single reconfiguration

port and exploits, where possible, reconfiguration pre-fetch.

We presented the algorithm considering a target architecture

where data are exchanged through a single shared memory,

and thus, supposing low interference, communication costs can

be directly included in task execution times adding them an

overhead. However, we underline that the proposed algorithm

can be extended to support communication tasks. This may

be useful, for example, for architectures where components



can communicate through different communication channels.

The extension is trivial, as communication tasks directly

correspond to the arcs connecting the vertices (execution tasks)

in the task graph. The communication tasks can can be mapped

only on some specific communication resources, depending on

where the source execution task has been mapped (and thus on

the available communication channels of the chosen resource),

and must be scheduled before the dependent execution task.

We also focused the example on 1D reconfiguration, but 2D

reconfiguration is also easily supported. However, the search

space increases depending on all the possible allocations of a

hardware implementation.

B. Algorithm details

The multistage decision process determines certain trade-

offs with respect to a single stage decision process where the

and at each step has all the possible permutations of tasks with

mapping for software implementations or tasks for placing

with hardware implementations. First, it allows considering

reconfiguration with pre-fetch and placing, without generating

too many candidates for all the admissible solutions (all tasks

with satisfied dependencies on all the processors, plus all the

reconfiguration tasks with all the possible placings). Second,

it reduces the dimensions of the pheromone data structures.

With a single decision process, the pheromone matrix would

have size 2Nx2Nx(P + C). In fact, there potentially are

reconfiguration and execution tasks (2N ) for each one of the

original tasks (N ), that can be selected in any of the up to 2N
scheduling steps, P resources (processors without the FPGA)

and C FPGA columns. By separating the decision process,

we require a data structure of 2Nx2N for the “scheduling

pheromones” (τs) and a data structure of 2Nx(P +C) for the

“mapping and placing pheromones” (taum, with M = P+C).

These can be compared to [13], where only scheduling is

performed (mappings are predetermined for each job), with

a pheromone data structure of NxN . Finally, using a multi-

stage decision process allows makes possible to use local

heuristics specific to the each problem, while maintaining a

good correlation among scheduling, mapping and placings,

because the ant is still exploring all the dimensions in a single

step and the pheromone feedback for subsequent iterations is

related to all the choices.

For the decision process, probabilities of selecting a node

for scheduling, and subsequently for mapping and placing are

as follow. The probability of scheduling task t at step i is:

psit =
[τsit]

αs

∗ [ηsit]
βs

∑
l∈Ni

[τsil]
αs ∗ [ηsil]

βs

Schedulable tasks t include both reconfiguration and execution

tasks. The local heuristic ηs is the mobility of the task. If the

ant schedules an execution tasks for which a reconfiguration

tasks was not selected, the probability to map task t to resource

m (only resources P are selected from M) is:

pmtm =
[τmtm]α

m

∗ [ηmtm]β
m

∑
l∈Nt

[τmtl ]
αm ∗ [ηmtl ]

βm

The local heuristic η is Earliest Finish Time (EFT) of the

task on the selected resource. If, instead, the ant selects a

reconfiguration task t, the probability to map it on the set of

resources that includes the processor driving the reconfigura-

tion, the ICAP and the set of columns (potentially all over M,

because any processor could drive the reconfiguration) is:

pmtm =
[τmtm]α

m

∗ [η(p)mtm]β
m

∑
l∈Nt

[τmtl ]
αm ∗ [η(p)mtl ]

βm

Where η(p) is calculated as an average among the pheromones

deposited for selecting the reconfiguration of the task for each

one of the required resources.

Pheromones update is performed by saving the “trace” of

the decision process of the ants (i.e., for each step we save

the all the selections in a ordered list), so we know the step in

which a task has been scheduled and the resource on which

the task has been mapped. At the end of every iteration,

the algorithm reinforce the pheromone trails in the two data

structures for the best ant of the current iteration and for the

overall best found following the elitist policy. To reduce the

possibility of getting stuck in local minima due to continuous

reinforcement, the overall best solution also can, with low

probability, be replaced by the current best.

IV. COMPARISON WITH RELATED WORK

Exact Integer Linear Programming (ILP) formulations for

scheduling [15] and hw/sw partitioning [16] have been pro-

posed, but they are not applicable for large instances of

the problems. Generally, heuristics method are preferred to

obtain sub-optimal results in acceptable times. A common

approach for the Resource Constrained Scheduling problem

(RCSP) is the list based algorithm [17], which uses a priority

list to determine the order in which operations should be

scheduled. The priority list can be obtained with several

methods, including optimization heuristics like Simulated An-

nealing (SA), Tabu Search (TS) [18] and Genetic Algorithms

(GAs) [3]. GAs [19], TS and SA [4], [5] have also been

used to solve hw/sw partitioning and mapping problems. The

Kernighan-Lin-Fiduccia-Mattheyses (KLFM) heuristic [20],

which tries to find the best solution performing local moves,

has been successfully adopted [6] in many formulations.

These works, however, assume that the hardware is static, i.e.

the programmable components cannot be reconfigured. ACO

has been recently applied separately to both scheduling [7],

[13] and hw/sw partitioning [21] for multiprocessor systems

with static programmable logic. Our formulation, however,

differs from these works for several aspects. We consider

scheduling and mapping simultaneously, we deal with placing

constraints on the reconfigurable components and we address

PDR and its overheads. Recently, proposals to solve several

of these problems together have been made. [22] and [23]

deal with scheduling and placing at the same time for devices

supporting PDR. However they do not consider some of

the constraints that PDR imposes, such as the presence of

a single configuration port, the requirement of a processor

to drive the reconfiguration, and the possibility to perform



reconfiguration pre-fetch. A solution which may resemble

ours is the one proposed by Banerjee [10] et al.. This work

introduces an ILP formulation that considers scheduling and

linear placing on devices with partial dynamic reconfiguration,

along with a KLFM-based heuristic. The limitations due to

the presence of a single reconfiguration port and the require-

ment of a processor are addressed, and reconfiguration pre-

fetch is considered. Also, tasks can have multiple hardware

implementations. Compared to this work, our solution is more

general. We deal with a multiprocessor platform, and beside

supporting multiple implementation points for hardware tasks,

we also address multiple software versions. Furthermore,

we perform considerably more exploration on the possible

solutions for the problem. KLFM methodology [10] performs

a scheduling for each possible implementation point of the

tasks and highly depends on the initial (random) partitioning to

obtain good results. Scheduling is performed with a list based

algorithm, and the priority list generation adopts a heuristic

that considers also placing constraints for hardware tasks. The

main difference is that our ACO heuristic is wrapped by the

scheduler, and thus each step is actually a scheduling step.

In Banerjee’s formulation, instead, the scheduler is wrapped

inside the KLFM heuristic, and it is used to evaluate the

benefit of moving a task to another implementation point.

However, the placing is addressed only by the heuristic of the

scheduler, which is fixed, and can greatly reduce the search

space for the algorithm. Even if, in our case, the search space

is bigger, thanks to the combined local and global heuristics

of ACO we can limit our exploration only in the promising

zones, without necessarily evaluating all the possible moves.

In the following section, we use this heuristic as a term

of comparison for the simplified case of a single processor

and a self-reconfigurable device. In [9] an ACO approach

that explores, together, mapping and scheduling of tasks and

communications is presented. The approach follows some of

our solutions (multistage decision approach, elitist policy) but

it does not account for PDR. We use this approach as a term

of comparison for both the simplified case and for the case of

a full MPSoC augmented with a FPGA supporting PDR.

V. EXPERIMENTAL EVALUATION

To evaluate our heuristic, we generated several task graphs

of varying dimensions using TGFF [24]. In particular, we

compared our ACO formulation with support for PDR to [9]

and [10], targeting a simplified architecture. This architecture,

similar to the one proposed in [10], supports a single gen-

eral purpose processor, a single reconfiguration port, and 20

columns of reconfigurable logic blocks. Task annotations have

been generated considering that a software implementation can

be around 3 to 5 times slower than a hardware implementa-

tion. Thus, hardware tasks take 1600 ± 1500 cycles, while

software tasks require 8600 ± 1500 cycles. Reconfiguration

time is proportional to the occupation of the tasks. For

our benchmarks, a task occupies from 3 to 7 columns. We

supposed that each column takes 300 cycles to be reconfigured.

We also modeled communication costs, considering a 100

TABLE III: Comparison among [9] (ACO without support

for self reconfiguration), [10] (KLFM based heuristic) and

this work (ACO with support for self reconfiguration) on a

simplified target architecture.

[9] [10] This Gain wr Gain wr

#Tasks work [9] [10]

10 28,081 15,629 9,997 64.4 % 36.0 %

20 84,182 27,325 22,113 73.7 % 19.1 %

30 113,430 43,922 37,109 67.3 % 15.5 %

40 126,386 62,366 58,149 54.0 % 6.8%

50 167,224 74,469 70,769 57.7 % 4.9%

Total 63.4 % 16.5 %

TABLE IV: Comparison between [9] and this work on a

MPSoC augmented with self-reconfigurable logic

#Tasks [9] This work Gain

10 19,260 11,163 42.0 %

20 37,392 21,595 42.3 %

30 63,048 42,001 33.4 %

40 95,405 63,225 33.7 %

50 108,022 81,938 24.1 %

60 137,414 112,794 17.9 %

70 161,290 128,343 20.4 %

80 185,702 159,391 14.2 %

90 225,382 188,648 16.3 %

100 232,561 189,836 18.4 %

200 503,546 446,127 11.4 %

250 670,282 559,554 16.5 %

500 1,296,583 1,095,948 15.5 %

Total 23.5 %

cycles overhead when there is a data transfer from software

to hardware tasks and vice-versa. Parameters for our ACO

algorithm were, respectively, 0.1 and 0.02 for scheduling and

mapping/placing evaporation rate. We used a number of ants

proportional to the number of nodes, and launched as many

iterations as required to make comparable the execution times,

if our algorithm did not reach convergence to a result before.

The algorithm returns the schedule with the lowest execution

time (number of cycles) found.

Table III shows the results for task graphs going from 10 to

50 tasks. Our ACO formulation performs considerably better,

in particular with small task graphs. The reason is that the

algorithm in [10] mainly explores the assignment of tasks to

hardware and software, while, for placing, it simply adopts a

greedy heuristic when determining the priority of a task in the

list based scheduler. So, even if it considers reconfiguration

pre-fetch, sometimes it cannot find some interesting placing

solutions. Our algorithm, instead, can also explore in that

direction, eventually finding placements with less fragmen-

tation that allow a better reuse of the reconfigurable logic.

When the number of tasks grows, however, the search space

becomes larger and the benefits of our method decrease. We

can then allow the ACO method to run for longer times and

find better results, or raise the evaporation rate to limit the

global search and focus more on local exploration. The same

table also shows the comparison, on the same architecture,

to [9], which does not support self-reconfigurable devices.

On this experimental setup, with a single processor and no

possibility to reuse the reconfigurable logic, our approach

can find schedules with 64.5% in average better execution

times. A key issue is that, with the proposed modeling of the

problem, multiple reconfigurations cannot go in parallel, but

are sequentialized by the presence of a single reconfiguration



port (ICAP). Furthermore, for the reconfiguration time, the

general purpose processor is used to drive the reconfiguration

itself. Maximum gain is obtained for the 20 nodes task graph

(73.7%), while the minimum speed up (54%) is verified with

the 40 nodes graph. The variability of the results depends

on the size of the problem, since a bigger task graph gives

to our ACO formulation more opportunities to explore for

configuration pre-fetch and placing of the tasks, but also from

the fact that the heuristic may find less opportunities to pre-

fetch the reconfiguration with larger instances.

This situation is better detailed in Table IV, which compares

the results of [9] to our ACO formulation on the complete

target platform addressed by this work, composed of a DSP,

an ARM processor, two PPCs, an ICAP and 20 columns of

reconfigurable logic. Task graphs have again been generated

with TGFF. Since the DSP can be very fast on some tasks but

very slow for others, we generated performance annotations of

7000±3500 cycles for it. For the ARM processor, we supposed

instead similar performance to the PPC, with a slightly lower

average (8000) but the same variance (±1500). We also

modeled communication costs from the couple ARM-DSP to

the PPCs and to the hardware tasks (100 cycles overhead).

Our ACO formulation obtains schedules with 23.5% better

execution time in average for all the 13 considered task graphs.

Again, on smaller task graphs it is easier for our heuristic to

find better placements to exploit reconfiguration and config-

uration pre-fetch, and thus to extract more parallelism. With

larger task graph instances (over 50 nodes), the exploration

space for our ACO formulation grows, but it constantly allows

obtaining schedules from 10% to 20% better, depending on

how pre-fetch can be scheduled. We should underline that

also in this architecture only a single reconfiguration at a time

can be performed, because there is a single ICAP, but the

reconfiguration can be driven by any one of the 2 PPCs.

VI. CONCLUSIONS

In this paper, we described an ACO heuristic for scheduling,

mapping and placing applications on heterogeneous MPSoCs

augmented with FPGAs that support PDR. Our heuristic

takes into consideration the overheads imposed by PDR in

terms of latency, fragmentation of the hardware tasks, limited

number of reconfiguration ports and the requirement of a

processing element to drive the reconfiguration. We compared

our ACO formulation to previous heuristics and obtained

solutions 16.5% better in average on a target platform with

a single processor. We then applied our methodology to a

MPSoC augmented with a FPGA and compared it to an ACO-

based heuristic without support for PDR. We showed that our

algorithm is able to provide better results by exploiting PDR

while hiding its overheads.
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