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Abstract—The constantly growing complexity of heterogeneous
systems requires effective methods for supporting the designer
both during the development of the application and the imple-
mentation of the architecture. Unfortunately, existing tools still
require that the designer develops large parts by hand, especially
when hardware accelerators and partial dynamic reconfiguration
are taken into account.

This paper presents A2B, an ongoing project at Politecnico di
Milano, about a semi-automatic framework to assist the designer
during the development of heterogeneous and reconfigurable
applications for both embedded and high-performance systems.
It allows to start from a C-based description of the behavioral
specification to be implemented and to perform a progressive
refinement of both the designed application and the hardware
architecture. It offers the possibility to specify decisions either
by an interactive environment or by automatic algorithms, hiding
most of the implementation details to the designer.

I. INTRODUCTION

Nowadays, embedded systems are very widespread and
the continuous growing request of computational power is
supported by technology scaling that allows to create larger
and larger devices at lower cost. Moreover, devices based on
Field Programmable Logic Array (FPGA) are becoming very
popular and integrated with general purpose processors (e.g.,
Intel Stellarton, Apple Macbook Pro and Maxeler MaxWork-
station [1], AVNET ZedBoard [2]), but they are also used
to create custom architectures themselves, both for embedded
systems and high-performance computing.

Moreover, in recent years, there is also a renovated interest
for High-Level Synthesis (HLS): both academic (e.g., LegUp
[3]) and commercial (e.g., Xilinx Vivado HLS, Maxeler Max-
Compiler) solutions have been proposed to easily create more
and more dedicated IP cores directly from their high-level
descriptions (e.g., C/C++/SystemC and also Java) to accelerate
the computation. On the other hand, in such a scenario, the
proper use of Partial Dynamic Reconfiguration (PDR) [4] is
becoming crucial to reduce the area occupation by assigning
more than one core to the same FPGA region in a time
multiplexing fashion. However, to obtain efficient systems,
it is necessary to properly hide the reconfiguration overhead
and, in general, to take these aspects into account from the
early stages of the design process. Unfortunately, PDR is still
lacking of complete and integrated design solutions, usually
requiring complex manual steps.
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Fig. 1: System-level design methodology, as proposed in [7].

This opens new challenges in Electronic System Level (ESL)
design [5] for a systematic and concurrent development of the
hardware and software components, providing exploration of
alternatives along the whole design process. Platform-based
design and orthogonalization of concerns [6] are thus very
common in system-level design since they allow to decouple
the development of the hardware/software application from the
implementation of the architecture. Following this principle,
ESL design flow is basically composed of two steps: decision
making and refinement [7], as shown in Figure 1. In particular,
decision making computes an allocation of resources, a spatial
binding and a temporal scheduling, while refinement automat-
ically generates an implementation, consisting of structural
models (e.g., RTL descriptions) and quality numbers (timing,
area and power consumption). Even if these steps can be sep-
arately approached, they require to share several information
to converge to high-quality solutions.

In this scenario, Daedalus [8] is a well-established example
of modular framework for hardware/software co-design, but
limited to loop affine applications and dataflow graphs. It
includes tools for automatic partitioning, system-level explo-
ration and automatic generation of the architecture, sharing
information through XML files. However, integration of hard-
ware cores and exploitation of PDR are not properly addressed.
Different techniques (e.g., [9], [10]) have been proposed
instead to support multiple hardware implementations (i.e.,
trade-offs between resource requirements and execution time),
but without proposing an automated flow up to the final
system. In the same way, [11] is able to automatically partition
the application in hardware cores and software processes, but
most of the system generation is still done by hand. On
the other hand, existing tools can assist during refinement
and efficiently perform logic and physical synthesis (like in
Xilinx Design Suite), where decision making is still left to
the designer and it requires high expertise.



In summary, most of the existing solutions cover only
specific aspects of the problem. We thus strongly believe
that a great improvement in the design of heterogeneous and
reconfigurable systems can be obtained when the designer will
mainly focus on the high-level development of the application
and the architecture in an integrated environment, while the
low-level details (e.g., generation of hardware and software
artifacts) should be hidden to the designer and assisted by
automatic and integrated design flows.

This paper proposes A2B, a modular and semi-automatic
framework for the development of reconfigurable systems. It
starts from the application description (currently in C language
with OpenMP pragmas [12] to suggest the kernels to be po-
tentially implemented in hardware) and a minimal description
of the target architecture, along with information about the
target device. Such information is used to properly develop the
application by efficiently taking into account the characteristics
of the target platform (e.g., communication bandwidth/delay,
resources available for hardware implementations, . . . ). Differ-
ent phases have been identified to cover the different aspects
of the design. Moreover, since we defined a common exchange
format based on XML and the framework is organized in a
modular way, it results very simple to integrate and compare
alternative solutions (either automated algorithms or commer-
cial tools) for each phase without affecting the others. The
output is a system specification (both hardware and software)
that can be directly used with commercial toolchains (e.g.,
Xilinx Design Suite or Maxeler MaxCompiler) to actually
generate the bitstream and program the target device.

The main contributions of this paper are:

• it presents a semi-automatic framework to design hetero-
geneous and reconfigurable systems on the top of existing
commercial tools;

• it shows how to integrate different solutions for each of
the phases, hiding most of the low-level implementation
details to the designer;

• it shows how to perform co-exploration of application and
architecture to easily generate customized reconfigurable
systems.

At the time being, we are working to support both the Xilinx
XUPV5 device (for FPGA-based embedded systems) and the
Maxeler MaxWorkstation (for High-Performance Computing).
We performed different experiments to validate the proposed
framework by generating alternative solutions for the same
application up the actual execution on the target device and
the results look promising. Moreover, we also developed a
practical Graphical User Interface (GUI) to assist the designer
during the development, suggesting the proper decisions and
disabling the ones that would lead to unfeasible solutions.

The rest of this paper is organized as follows. Section II
describes the proposed framework and its organization. Then,
Section III and Section IV detail the different phases of the
design, that are decision making and refinement, respectively.
Preliminary results are presented in Section V, while Section
VI concludes the paper and outlines future directions of work.

II. A2B: FRAMEWORK OVERVIEW

The aim of the proposed framework is to support the
design for three different classes of users: the application
designer, the platform architect and the system designer. The
application designer needs to optimize the application and,
thus, to evaluate different solutions of partitioning, mapping
and scheduling, including the evaluation of the reconfigura-
tion overhead. The platform architect needs to explore the
architecture and its parameters in order to evaluate different
architectural solutions with respect to the input application.
Finally, the system designer covers both the phases, needing
to concurrently develop the application and the architecture.
In this case, an integrated environment is definitively required
to proper share the information between the two phases of the
design.
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Fig. 2: Overview of the proposed framework, namely A2B.
Gray boxes represent the identified steps.

The proposed framework, namely A2B, follows the idea in
[7] and it is thus composed of two different parts, shown in
Figure 2: the decision making and the refinement. The former
includes all the phases that are needed for determining the
organization of the system and the partitioned application,
including its mapping and scheduling with respect to the
available components of the architecture. The latter includes
the generation of the artifacts for the actual synthesis of the
architecture (i.e., both hardware and software specifications).

In details, A2B starts from the application specification (in
C annotated with pragmas) and a minimal description of the
target architecture (in XML), along with information about the
target device. As output, it produces the specification of both
the hardware and software specifications. The former includes
the definition of the architecture and the hardware descriptions
of the cores and their interfaces. The latter includes the soft-
ware that runs on the top of each general purpose processor.
The produced system is fully compatible with commercial
tools for the actual synthesis and generation of the bitstream.



To easily share the information among the different phases,
A2B adopts an XML file based on the following structure:

• architecture: the description (at different levels of ab-
straction) of processors, hardware logic, memories, IP
blocks and their interconnections;

• application: the description (e.g., reference to the source
code files) and the characterization (e.g., profiling data)
of the application;

• library: list of hardware and software implementations
that are available for each of the application’s tasks;

• partitions: the description of the partitioned solution
(task graph) and its mapping and scheduling with respect
to the components of the architecture.

A2B is thus highly integrated and it allows co-exploring
architecture and application, if needed. In fact, each algorithm
can get information and/or modify each of these parts.

Architecture: As shown in Figure 4, in A2B, an architec-
tural template is composed of one or more systems (i.e., a
portion of the architecture implementing a given functionality),
adopting communication elements for their interconnection,
(e.g., shared bus, NoC, point-to-point). Since a generic func-
tionality can consist of more than one part, a system can
be represented as a set of sub-systems (this is the reason of
the self-loop in the Figure 3). Then, in order to implement
a generic functionality on a piece of hardware, processing
elements, memory elements and communication elements are
needed. As it might be notice this schema is really flexible:
in fact, using this hierarchical representation, it is easy to
represent in A2B a large set of architectures, such as Maxeler
MaxWorkstation [1] (i.e, Intel i7 CPU connected via PCI-E to
a Xilinx Virtex-6) and the AVNET ZedBoard [2] (i.e., a dual-
core ARM Cortex-9 and a Xilinx Artix-7 within the same chip)
and also FPGA-based embedded systems built on the top of
existing commercial devices.

In details, a processing element is a component that can
implement an application task and it can thus represent a
processor, a static IP-core or a reconfigurable region. In
order to specify the differences between the different kinds
of processing elements, we adopted a set of attributes (i.e.,
“specs”). For instance, if the designer wants to specify a
software processor, the designer can specify parameters like
the number of concurrent threads, the ISA and the working
frequency. Differently, if the design wants to describe a static
IP core, the designer can specify the implemented functionality
and the area occupation, if available.

A memory element is a generic storage unit that can
represent a cache, a read-only ROM, on-chip BRAMs, an off-
chip DDR, etc. Again, in order to specify the characteristics of
the memory elements, we adopted the “specs” attributes, such
as, for example, the number of clock cycles needed to read or
write a data. It is clear that changing these two parameters, it
is possible to model different memories and thus explore the
resulting effects on the program execution. Another important
attributes are the size of the memories and the number of
read/write ports to model concurrent accesses. Then, based
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Fig. 3: Hierarchical representation of an architectural template
in the A2B representation.

on the adopted communication elements and the specified
connections, the memories can be local to some processing
elements or shared among them.

Note that the number of the specified parameters highly
depends on the level of abstraction that is currently adopted
for the exploration. For example, if we are in the early stage
of the design, most of the low-level details can be omitted.

Application: The application to be implemented is repre-
sented in the A2B-XML as the list of the C files describing the
specification, annotated with OpenMP pragmas to identify the
tasks to be potentially hardware accelerated and the parallelism
inside the specification. Further custom pragmas are adopted
to specify additional information (e.g., memory accesses, data
bit-width, . . . ). Then, additional information can be obtained
through profiling, performed with custom plugins based on
the LLVM compiler1. This profiling determines the number of
executions for each task and the accessed memory location
for each of them. Based on these data, it will be then
possible to better understand if a task is a good candidate
to be hardware accelerated: indeed, if a function is executed
many times, probably it is good to implement it in hardware.
Moreover, for streaming application, we also evaluate if the
analyzed memory access pattern is compliant with this model
of computation. In this way, it is also possible to generate
custom pipelines with dedicated memory elements between
the different cores to exchange the data.

Library: The library contains all the implementations (soft-
ware and hardware) for each task of the application under
analysis. Each implementation can be considered as a mode
for executing the functionality and it specifies details about
its execution time and requirements of resources (i.e., number
of LUTs, BRAMs, DSPs). Note that an implementation can
implement different tasks of the same application. In this
case, we can easily model the hardware reuse of the logic
to implement different functions.

Partitions: This part of the A2B-XML describes the so-
lution for the application. In particular, it describes the parti-
tioned solution (i.e., the task graph) in terms of tasks and their
dependencies. Then, it also describes the mapping of these
tasks with respect to the implementations and the processing
elements, along with a order of execution.

1http://llvm.org



III. DECISION MAKING

According to the framework proposed in Figure 2, the
decision making step starts from the description of the input
application and the information about the target device. As
output, it produces an XML file that contains the information
about the target architecture and the decisions about the
application. Then, it is composed of the following phases:

• Task Graph Generation: it extracts and optimizes the
task graph for the input application.

• Library Generation: it generates admissible implemen-
tations (both hardware and software) for each of the tasks.

• Mapping and Scheduling: it assigns an implementation
and a component for the execution of each task.

• Architecture Generation: it determines the topology and
the high-level parameters of the target architecture (if the
architecture exploration has to be performed);

Note that, if the architecture has been already generated and
characterized, the design making phase coincides with the
classical platform-based design [6]. On the contrary, it is also
possible to perform the design of a custom architecture on the
basis of the application to be deployed.

Task Graph Generation: In our current implementation,
this part starts from the code of the input application and it
extracts the task graph based on the OpenMP pragma anno-
tations, as defined in [13], with a compiler-based approach.
Automatic partitioning methodologies ([11], [14]) can be also
adopted to generate the task graph, provided to generate
the corresponding description in the partitions section. In
this case, this part may include further steps, as high-level
analysis or profiling of the application behavior, to annotate
each of the extracted kernels, represented as functions in the
rest of the framework. Additionally, different transformations
(e.g., kernel splitting/merging) are performed to determine
the proper granularity of the extracted tasks and trade-off
performance and requirement of resources based on the li-
brary implementations. The tasks and the task graph are then
reported into the XML, associated with the corresponding
C-based description to be further processed by methods for
library generation. Meta-information, such as the number of
repetitions for each of the tasks, is also stored along with
the required communications. This will be also necessary to
properly generate the module interconnections and the run-
time system.

Library Generation: For each task , it is possible to
generate multiple implementations for the available processing
elements. Moreover, considering hardware implementations, it
is also possible to derive multiple variants of the same task
with different execution times and requirement of resources.

In this phase, we interface with HLS tools (e.g., Xilinx
Vivado HLS) for the automatic generation and synthesis of the
hardware implementations on the target device. This will allow
to determine the latency and the requirements of resources.
An alternative possibility is to adopt high-level estimation
methods. In this way, depending on the stage of the exploration
phase, one can trade-off elaboration time and accuracy by

relying, at the beginning, on a high-level analysis tool to obtain
a rough estimation of the resource consumption of a hardware
task. Then, after this first high-level exploration phase one
can synthesize the actual hardware components and obtain
final the characterization. The characterization of software
implementations can be obtained instead by estimation or
profiling methods [15].

All the results are then reported into the library section for
further use and they are fundamental for the mapping phase
in order to effectively explore the design space.

Mapping and Scheduling: To deploy an application on
the target architecture, we need to select, for each task, an
implementation and a processing element for its execution.
Automatic methodologies (e.g., [9], [10]) can be easily inte-
grated into A2B: the implementations are contained into the
library and this phase updates the partitions section with the
information about the mapping decisions.

For each of the hardware components, the framework is able
to determine the proper level of reconfiguration. In particular,
if only one core is assigned to only one hardware module
(i.e., a portion of the FPGA), it is implemented as a static
IP since no reconfiguration is required. Otherwise, if multiple
components are assigned to the same FPGA portion, PDR will
be adopted to switch between the different implementations.
Finally, if two or more tasks share the same implementation
on a component, a reconfiguration is not required to switch
between the tasks and hardware reuse can be exploited. In
such a way, the designer (or the corresponding automated
methodology) simply determines the mapping of the tasks,
without taking care of the reconfiguration details that are
automatically managed by the framework.

The mapping methodology uses the information contained
in the architectural template that specifies, among the other
components, the number of generic processors available in
the system as well as an upper bound to the number of
reconfigurable regions that the mapper may effectively use in
the resulting architecture solution. At the time being, while
exploring, the adopted algorithm increasingly instantiates any
number of reconfigurable regions deemed appropriate in order
to reduce the overall execution time of the application, finding
the best trade off between the time saved executing tasks in
hardware and the time spent reconfiguring these tasks onto the
corresponding reconfigurable regions. Moreover, depending on
the nature of the application and the adopted mapping and
scheduling, it might even be possible to mask the reconfigu-
ration time, as it will be shown in the adopted case study (see
Section V).

While finding the trade-off for the best execution time,
the adopted algorithm enforces that no resource consumption
(for example, BRAMs or LUTs) exceeds the corresponding
availability of that resource on the target platform; the com-
puted solution is then admissible by construction. Moreover,
if the resulting solution assigns only one task to a specific
reconfigurable region, that region is immediately converted to
a static hardware module (i.e. non reconfigurable) to save the
overhead both in term of area and reconfiguration time.



More specifically, the mapping process is divided into two
sequential steps, iterated as many times as deemed required
for an extensive design space exploration. During the first
phase, it uses a constructive approach to iteratively build a
mapping trace, i.e. a sequence of mapping choices where
each application’s task is present exactly once. A mapping
choice is a 3-tuple composed of a task (from the task graph),
a processing element (among software processors, IPs, and
reconfigurable regions) and an implementation (among the one
available in the library section of the XML file). The solution
is iteratively built by analyzing the set of currently ready
tasks in the task graph (given the currently executed tasks)
and computing all the possible mapping choices at each step.
This choice represents the execution of a specific task onto
a specific processor using a specific implementation of that
task onto that (kind of) processor. Afterwards, one of these
mapping choices becomes part of the mapping trace by means
of a biased random selection process. The choice of a mapping
choice implies that the corresponding task is no longer ready
(because it has been executed) and the corresponding task
dependencies are satisfied, potentially increasing the set of
ready tasks. As already specified, in order to guarantee the
admissibility of the solution, a constraint on resource con-
sumption is in place such that no choice is considered at any
step of the algorithm if it would violate any resource limit.

After all the tasks have been mapped once, the mapping
trace is complete. During the second step, the mapping trace
is evaluated against any number of performance metrics, which
can be easily customized in the framework to target different
objectives (e.g., execution time or power consumption). In this
work we focused on reducing the overall execution time: for
this reason, our metric is the make-span of the application.
It takes into account also the impact of reconfigurations. To
do this, we implemented a fast, approximate reconfiguration
aware scheduler. This component firstly scans the mapping
trace to obtain the set of tasks mapped onto every reconfig-
urable region, then remodels the original task graph adding
all the necessary reconfiguration tasks, i.e. between successive
tasks scheduled onto the same reconfigurable region. Commu-
nication tasks are introduced, too, and considered during tasks’
start and end times assignments. After this, it analyzes the
dependencies between tasks and simulates their execution on
the target architecture. Communications-related considerations
(i.e. bandwidth of the bus and total amount of data to be
transferred) can be also taken into account. This information
is used to guide the exploration towards an improved solution
during successive iterations of the optimization algorithm by
adding more information to the “biased” random selection.

Note that this part is tightly connected with the floorplan-
ning phase [16], implemented as an inner loop in our method-
ology. In fact, it is necessary to determine the actual physical
regions and evaluate the corresponding task assignment to
early identify any violation of the constraints.

Architecture Generation: This part includes all the neces-
sary steps to determine the high-level description of the target

architecture, that is the description only with components,
interconnections and memories, along with their most relevant
parameters (i.e., number of instances, size, . . . ). Different
algorithms can be integrated for the exploration of the archi-
tecture based on the application’s characteristics. In particular,
considering the requirements of the application, it is possible
to determine the processors number and area of the FPGA
dedicated to hardware cores. Then, it is also possible to explore
the interconnection topology (e.g., bus-based, NoC-based or
point-to-point) and the memories size as in [17]. This phase
thus generates an updated version of the architecture section
in the XML file to be taken into account by the rest of the
flow, allowing a progressive refinement of both application and
architecture.

IV. REFINEMENT

The refinement step starts from the solution generated in the
previous phase (represented into the XML file) and generates,
as output, the hardware and software specifications. This part
is thus composed of the following phases:

• Platform Specification Generation: it generates the
specifications of the hardware part (i.e., component in-
stances and their interconnections), compliant with the
backend tools and thus ready for the synthesis;

• Code Generation: it generates the specifications of the
software part, that is the software code that has to run on
each of the general purpose processor.

Note that this part is highly target-dependent since it is based
not only on the target device, but also on the tools that will
adopted for the synthesis.

Platform Specification Generation: It generates the speci-
fication of the hardware part to interface with commercial tools
for the synthesis. This part is highly target-dependent since it
requires to have information also about the synthesis tools that
will be adopted. We thus include a database of components
classified by the software tool and the corresponding version.
This phase then requires to map the high-level components of
the architecture that have been selected in the previous phase
to the physical components (e.g., IP cores) in the database. At
the time being, we support the generation of the project files
for Xilinx ISE Design Suite 14.3 to target Xilinx XUPV5 and
for Maxeler MaxCompiler to target Maxeler MaxWorkstation.
We are also working to support AVNET ZedBoard with the
newer Xilinx Vivado Design Suite. This step is based on the
refinement of an architectural template with the specification
of the target application obtained through the previous steps.

Concerning the Xilinx XUPV5 architecture the starting
template consists in a bus-based system with a shared memory
and one or two General Purpose Microblaze processors. The
platform specification generation step creates for each of the
tasks mapped on hardware the VHDL code is generated by
means of HLS techniques and bus and memory (if needed)
interfaces are generated. These accelerators are then connected
to the base system used as a template.

Maxeler MaxWorkstation is a high-performance system for
dataflow computation. In this case the platform generation



step still generates the core for each HW task exploiting
Maxeler proprietary HLS tools based on Java descriptions;
however these cores are not directly connected to a shared
bus, but they are connected one other to form a pipeline.
Maxeler proprietary tools permit the generation of the whole
hardware system starting from a high-level description of the
components without requiring to generate specific interfaces
for interconnecting the components or for communicating with
an external memory.

Regardless of which target platform is selected, this step
analyzes the mapping directives to identify whether or not a
hardware component must be implemented as a reconfigurable
core or not depending on how many different implementations
have been mapped on the core itself.

Code Generation: This step generates the software code to
be executed by the general purpose processors, including the
software tasks, the run-time manager, including the drivers to
control the execution of the cores, the data transfers and the
dynamic reconfigurations. Note that, if one task/core requires
a dedicated communication protocol to transfer the data, it
generates the proper software code according to the proto-
col description. This is possible since information is shared
between the library generation (where the core is created),
the mapping (where the implementation is selected) and this
part (where the core is instantiated and connected to both the
software and the hardware sides).

As for the previous step, also this part is target dependent.
Indeed, even if the software code for a task can be generally di-
rectly extracted from the starting application, the set of drivers
and OS functions and abstractions for scheduling the tasks
and for managing the reconfiguration are target-dependent.
For the XUPV5 architecture, this step generates the drivers to
transfer data to and get data from the hardware tasks and also a
scheduler to be executed on one of the Microblazes, along with
the drivers to manage the reconfigurations exploiting Xilinx
ICAP. On the other side, for the Maxeler MaxWorkstation,
this step rewrites the original application code substituting the
invocation of tasks starting the streaming computation with
the proper API calls provided by MaxCompiler [1].

V. CASE STUDY: EDGE DETECTION

We are implementing A2B in C++ as an extension of
the framework proposed in [18]. At the moment, we support
the specification for architectures to be synthesized with
Xilinx ISE Design Suite ver 14.3 and Maxeler MaxCompiler
2012.1. Note that extending the framework to support dif-
ferent toolchains mainly requires to properly customize the
refinement steps. This allows to decompose the problem, with
different teams that can work in parallel.

In the following, we will show how the proposed framework
can be adopted to easily design a reconfigurable system for a
point-wise filtering algorithm to compute the edge detection,
where the designer has only to take care of the application
development and the toolchain hides some implementation
details. The test application is composed of four main steps:

a gray scale conversion (GS), a Gaussian blur filter (GB), an
edge detection filter (ED) and finally a threshold phase (TH).
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Fig. 4: High-level schema of the evaluated architecture: gray
regions are automatically removed in the second experiment.

We initially designed a static architecture, working at
100MHz, implementing all the four computational steps in
hardware (designed by hand with a specific protocol for
interfacing the memory represented in the XML file as in
[19], [20]), while reading and writing the image have been per-
formed by software tasks (assigned to one of the Microblazes).
For the sake of simplicity, the runtime execution is managed
by another Microblaze processor. The resulting architecture is
shown in Figure 4 and it occupies 5,641 slices of the target
device, that is a Xilinx XUPV5 FPGA (Virtex5 LX110T –
17,280 slices). Then, we profiled only the execution of these
four kernel steps that completed in 151,792,313 clock cycles
for an image of 1,024x768 pixels.

After that, we aim at reducing the area of the resulting
system by exploiting PDR. For this reason, we analyzed
the execution time of each phase, reported in Table I, and
we decided to move ED and TH to the regions where GS
and GB were executed, respectively. In such a way, we
aim at masking the reconfiguration of one region during the
execution of the other one. For doing this through the GUI,
we simply reduce the area dedicated to hardware acceleration
and the mapping strategy automatically assigns different tasks
to the same region to save resources. Thus, the architecture
generation phase automatically infers that they have to be
implemented as reconfigurable regions and determines the
minimal size for each of these modules, to generate the proper
synthesis constraints. Finally, it implements the necessary
steps for reconfiguring the functionality at run-time (including
the necessary descriptions in the output project file for partial
bitstream generation). It also adds the proper elements to
the architecture (e.g., ICAP) and it accordingly modifies the
software run-time manager to properly issue both the execution
and the reconfiguration. We thus generated the new system in
few seconds (except for the time required for synthesis and
bitstream generation) and it now occupies 5,321 slices since
A2B automatically removed the unused regions. However,
some extra logic to manage the reconfiguration is required.

Concerning the performance, the two implementations are
almost equivalent in terms of overall execution time since:
with these mapping decisions we are effectively able to mask
the reconfiguration time overhead.

In an analogous fashion, we implemented the same appli-



TABLE I: Execution time and area occupation of each kernel
in the Xilinx XUPV5, apart from the core interface that does
not require to be reconfigured.

Task Execution Time [cycles] Slices
GS 26,824,247 128
GB 58,399,544 276
ED 39,524,613 213
TH 26,896,272 134

cation targeting the Maxeler MaxWorkstation platform. We
first modeled the architecture of the heterogeneous system as
defined in the specification of the Maxeler MaxWorkstation
with a generic processor linked via PCI-Express to a Xilinx
Virtex-6 FPGA board. Afterwards, we implemented the same
application used in the previous test case as both static and
reconfigurable designs. The refinement phase automatically
also generates the files (e.g., Java-based descriptions) for the
HLS of the hardware cores with Maxeler MaxCompiler.

The application is partitioned so that all the computational
tasks are moved to hardware, exploiting streaming computa-
tion only internally to each task. In fact, all data movements
to the tasks are managed through PCI-Express, as synthesized
by the Maxeler platform. For efficiency reasons, the commu-
nication to and from the host processor is managed through an
additional Virtex-6 FPGA present on the same board, linked to
the first through a dedicated channel. The static design features
four static regions, one per hardware task. We also provided
four different implementations (i.e., VHDL obtained through
the Maxeler toolchain) per each task, differing among them
only by the amount of pixels that may be processed at once.
The more the number of pixels processed at once, the better the
performance but the higher the resource usage count. We could
provide larger implementations, but due to long synthesis time
we preferred to scale the problem down, preferring to constrain
the actual available area and synthesizing relatively smaller
implementations. Even though the problem is scaled, the same
conclusions apply when all the FPGA is employed and larger
and more performing implementations are employed.

After running the mapper onto this instance problem for just
a few seconds, the optimal mapping is found. This solution is
built so that it never violates the maximum resource count of
the FPGA. For this experiment, we fix the amount of available
area to use to 10000 LUTs. For this reason, the maximally
performing ad implementable pipeline is the one processing
4 pixels per clock cycle, with a resource usage count of
7892 LUTs. In fact, the even more performing implementation
processing 8 pixels per clock cycle would occupy more than
15000 LUTs. Figure 5 represents the fraction of execution
time spent by each applications’ task, along with total execu-
tion time and time spent for potential reconfigurations (time
actually spent only in the reconfigurable design). The bottom
part of the figure shows how the total execution time of the
static design (when run with an input data of 2500 frames) is
1637,5 ms.

On the other hand, the architectural template of the re-
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Fig. 5: Parallelism 8 takes less time to compute than par-
allelism 4, even though two reconfigurations occur (one of
which is masked).

configurable system features only 2 reconfigurable regions
(R0 and R1) available for tasks mapping. In this test case,
the mapping strategy rapidly explores all possible mappings
and determines that the best one is R0:< GS, TH > R1:<
GB,ED >. This mapping corresponds requires 664 LUTs
for R0 (max(LUTs(GS), LUTs(TH)) = max(664.64))
and 7, 680 LUTs for R1 (max(LUTs(GB), LUTs(ED)) =
max(7, 680, 7, 376)), totaling 8, 344 LUTs for the entire hard-
ware system. This resource consumption is comparable to the
static architecture. Considering the same inputs size of the case
with the static architecture (2, 550 frames) the corresponding
execution time is 882ms, a speedup of 1.86x with an area
consumption factor of 1.06x.

The results show that reconfigurable designs do perform
better than static designs in specific cases. In the test case
we see that the reconfigurable design performs better than
the static one when the execution time of a stage in the
pipeline is long enough to mask the reconfiguration time
of any reconfigurable region and when the adoption of a
more resource hungry implementation leads to an improved
execution time. In this case the adoption of PDR allows the
FPGA to be virtually larger than what it really is, allowing for
more performing implementations to be used.

Referring to Figure 5 it is easy to see how with parallelism
8, during the execution of GB and ED, the reconfiguration
time is largely masked, given that tasks are sequential and
other tasks cannot execute in parallel. Moreover, using a more
resource hungry – and more performing – implementation,
if we can execute the application on a device virtually larger
than the actual one, which is the case when PR is used, we can
potentially design a system more efficient that the static one –
which is the case in Figure 5. The conclusion is that under the
imposed area constraint of 10, 000 LUTs, the reconfigurable
design is the most performing one.

The results show that A2B can be efficiently used to design
and prototype complex reconfigurable systems, hiding most of
the details to the designer and opening new possibilities for
collaborative research thanks to its modular organization.



VI. CONCLUSIONS AND FUTURE WORK

This paper proposed an integrated framework that is cur-
rently under development at Politecnico di Milano for the
design of reconfigurable systems. It is composed of different
steps for the exploration of both architecture and application.
It also includes different methodologies and tools to cover the
two classical aspects of the system-level design: the decision
making and the refinement in order to support the designer
as much as possible in the generation of systems ready for
the synthesis and the deployment onto the target device. We
described how it is possible to integrate different existing
methodologies for each of the steps, including the manual
intervention of the designer through a practical GUI.

We are currently working on automated methodologies and
exploration algorithms for each of the phases (e.g., task graph
generation, mapping and scheduling, architecture generation)
to develop high-performance systems customized with respect
to the applications, along with the integration of commercial
tools for HLS (i.e., library generation of the hardware im-
plementations). Finally, we are also evaluating the proposed
framework on more complex test cases.
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