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Abstract—This paper explores the reconfiguration of slowly
changing constants in an explicit finite difference solver for
option pricing. Numerical methods for option pricing, such as
finite difference, are computationally very complex and can be
aided by hardware acceleration. Such hardware implementa-
tions can be further improved by specialising the circuit for
constants, and reconfiguring the circuit when the constants
change. In this paper we demonstrate how this concept can be
applied to the pricing of European and American options. We
present an analytical optimisation approach that explores the
benefit of specialised designs over a static one. The key to this
approach is the performance and area estimation of kernels
that is based on the parameters of arithmetic operators inside
the kernel. This allows us to quickly explore several design
options without building full designs. Our experimental results
on a Xilinx XC6VLX760 FPGA show that with a partially
reconfigurable design performance can be improved by a factor
of 4.7 over a design without reconfiguration.

I. INTRODUCTION

Financial applications such as option pricing often require
computationally complex models that could benefit from
customised hardware accelerators. Option pricing usually
requires solving partial differential equations (PDEs) and in
most cases these equations cannot be solved analytically [1].
The Explicit Finite Difference Method (EFD) is a procedure
to approximate the solution of such equations numerically.
EFD relies on discretising function values on a grid, and
it approximates derivatives by finite differences between
points on the grid. The computational complexity of EFD
grows quadratically with increasing accuracy if only one
underlying random variable is used. For multiple random
variables, the complexity also grows quadratically.

Financial institutions often use EFD to evaluate large
portfolios with multiple underlying assets and this process
can take several hours even on a large computational grid.
Reconfigurable hardware such as FPGAs can be used to
accelerate this computation effectively while being more
energy efficient than other accelerators such as GPUs [2].
FPGAs can also be used to develop customised recon-
figurable versions of an application. Reconfiguration can
improve both performance [3] and energy efficiency [4]. Our
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goal in this paper is to explore reconfiguration of constants
in a finite difference solver in order to improve performance;
the treatment covers both full and partial reconfiguration.

The main contributions of this paper are:

• An optimisation approach for Explicit Finite Difference
(EFD) models exploiting run-time reconfiguration of
constants.

• Case Studies for European and American Option pric-
ing applications, demonstrating the proposed approach
with various operators.

• Experimental results and analysis, showing the trade-
off for specific reconfigurable devices.

II. BACKGROUND

An option is a financial instrument that conveys the right,
but not the obligation, to engage in a future transaction. A
simple example is a European put option that provides the
option owner with the right to sell an asset (e.g. a stock or
a bond) for a pre-arranged strike price K at a specific time
T in the future. If the underlying asset price S at time T
is lower than the strike price K then the owner can make a
profit of K − S by exercising the option. If the asset price
is higher than the strike price, the option would generally
not be used and is hence worthless. Another very common
type of option are American options, where the option is not
limited to one particular exercise time T . Instead, it can be
exercised at any time up to T .

The price of an option can be determined with a partial
differential equation called the Black-Scholes equation [5].
However, the equation cannot be directly applied to Amer-
ican options and numerical methods have to be used. Nu-
merical techniques include Monte-Carlo simulation [6], [7],
[8], quadrature methods [9], tree-based methods [10], and
finite difference methods [2].

Multinomial tree based methods can efficiently price
American options that cannot be handled easily by Monte
Carlo methods due to features such as path dependence,
while quadrature methods can provide more accurate results
than tree based methods in certain cases. However, the above
methods cannot effectively address issues such as the effects
of asset price on option price over time. The finite difference
method, on the other hand, is mathematically easier to apply
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Figure 1. Calculations of values in a finite difference grid.

and can generate a grid of option prices over time, based on
a range of underlying asset price variations.

Finite difference methods can also be used to solve
differential equations in other areas such as solving the heat
equation in thermodynamics [11] or Maxwell’s equations in
electromagnetism [12].

One well known approach to improve performance and
reduce size of hardware designs is constant specialisation,
also known as partial evaluation [13]. A slowly changing
input to the design is assumed to be constant and the
hardware design is optimised for this particular constant,
often resulting in a faster and smaller circuit. When the
input changes, the circuit is reconfigured. This approach
is used in various applications such as encryption [14]
or FIR filtering [15]. However, the reconfiguration time
itself imposes an overhead on performance and needs to
be balanced against the speed-up obtained through constant
specialisation. We shall address this issue in section IV.

III. HARDWARE ARCHITECTURE FOR EXPLICIT FINITE
DIFFERENCE

In the case of a single variable, the EFD procedure
approximates the solution of the Black-Scholes PDE by
creating a discrete, two-dimensional grid of asset prices S
over time t as illustrated in figure 1. The Black-Scholes
equation with an asset following a geometric Brownian
motion is given as:

∂f

∂t
+ (r − q)S ∂f

∂S
+

1

2
σ2 ∂

2f

∂S2
= rf (1)

where f(S, t) denotes the price of the option, S denotes
the value of the underlying asset, t denotes time, r denotes
the risk-free interest rate, σ denotes the volatility of the
underlying asset, and q denotes the dividend yield paid by
the underlying asset. The EDF procedure approximates the
equation within the boundaries of [0, T ] where T is the
time to maturity, and within [0, Smax] where Smax for a put
option is determined such that f(S, T ) = 0 plus a buffering
margin at the user’s choice. Within these boundaries a grid
is created by dividing time into N equally spaced intervals
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Figure 2. Parallel hardware architecture for calculating the EFD model.

∆t = T/N and dividing asset price into M equally spaced
intervals ∆S = Smax/M . This grid has (N + 1)× (M + 1)
values. An effective approximation can be obtained with the
following equations and with Z = lnS:

fi,j = α · fi+1,j+1 + β · fi+1,j + γ · fi+1,j−1 (2)
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The algorithm runs leftwards through the grid and the val-

ues for the rightmost column (inital values) are calculated as
max(K − SN+1,j , 0). In order to organise the computation
efficiently we note the following:

• The coefficients α, β and γ are constant throughout the
computation of one option.

• We can develop a specialised circuit where these coef-
ficients are hard-coded, resulting in higher performance
and lower area requirements.

In previous work we have developed a parallel hardware
architecture that does not make use of constant reconfig-
uration [2]. This hardware architecture can harness two
types of parallelism in the EFD procedure: First, coarse-
grain parallelism, which refers to the concurrent pricing
of multiple options. Second, fine-grain parallelism, which
refers to the simultaneous calculation of values on the grid
for one option. The hardware architecture is illustrated in
figure 2. The Main Controller performs overall control and
facilitates communication with a host software application.
The Coarse Core is the main processor for pricing one
option, and there can be several of these cores to price
multiple options simultaneously. Each Coarse Core consists
of one or more Fine Cores. Fine Cores are fully pipelined
and calculate the value of the present node based on three
previously calculated options values as illustrated in figure 1.
Since many of these calculations can be performed in
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Figure 3. Hardware architecture of the block Fine Core in Fig. 2 for
pricing European Options. The coefficients α, β and γ are constant for a
particular option to be priced. Solid black boxes denote registers.

parallel, we can assemble multiple Fine Cores into a more
powerful Coarse Core. The overall number of deployed cores
depends on the available hardware resources on the target
device. The Memory Controller provides access to double-
buffered memory in order to fully utilise the pipeline in the
Fine Cores. The Initialiser initialises the memory module by
setting up the initial option prices, and the Finaliser provides
the results to the software host application.

Figure 3 illustrates the structure of a Fine Core for
calculating European options according to equation 2. For
each fi,j evaluation, it calculates one grid value based on
three previous grid values and the three coefficients. Note
that the coefficients remain the same throughout the option
valuation process. Switch inputs s1 and s2 in Figure 3 are
used to control their corresponding multiplexers to read the
overlapping data elements from neighbouring Fine Cores.

The design can be extended easily to support American
options. Unlike European options, American options can
be exercised at any point up to T . This can be modelled
by calculating the maximum of the value according to
equation 2 and the value if exercised early. This early
exercise value is simply the initial value fN+1,j . Hence,
we can extend our core for American options by adding a
comparator to the pipeline as shown in figure 4.

IV. OPTIMISATION APPROACH

The key concept of our optimisation approach is to
specialise the circuit for the coefficients α, β and γ. In
our previous work [2] these coefficients were loaded into
registers as illustrated in figure 3. We can exploit the fact
that these coefficients are constant throughout the pricing of
one option and create a specialised version of the design that
uses fixed-coefficient multipliers for these constants. Such
fixed-coefficient multipliers can provide higher performance
while requiring less area and power. When the pricing of
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Figure 4. Hardware architecture for pricing American Options.

one option is finished, the circuit is reconfigured with a
specialised version for the next option.

Specialising a multiplier for a constant input can lead
to high performance because the critical path is shortened.
Likewise, area is reduced because redundant logic can be
removed. In parallel applications such as ours we can turn
the area reduction into an additional performance increase:

• Smaller cores mean that more of them can be included
on the same device.

• More cores result in higher overall processing rates.
We could explore the benefit of constant reconfiguration

by implementing a range of designs and measuring their
performance. However, in many cases it is desirable to make
performance predictions without completing the lengthy
implementation process for the entire design. In order to
compare the performance of static and reconfigurable de-
signs, we propose a simple analytical approach. We begin
by calculating the execution time Ts for pricing one option
in a static design as:

Ts =
ns · ts
ps

(3)

where ns is the number of data elements to be processed,
ts is the cycle time, and ps is the number of processing
elements in the static design. Equation 3 does not consider
the delay through pipeline stages; however, this effect can
be neglected if ns is significantly larger than the number
of pipeline stages. Likewise, we can calculate the execution
time Td for the dynamic reconfigurable design:

Td =
nd · td
pd

+ tr (4)

where nd, td and pd denote the same parameters as above
for the dynamic design, and tr denotes the reconfiguration
time. For our application it is the case that the number of
data elements to be processed is the same for static and
dynamic designs; hence ns = nd = n. In order to achieve



an overall performance benefit, the execution time of the
dynamic design must be lower than the static design:

Td < Ts
n · td
pd

+ tr <
n · ts
ps

tr < n ·
(
ts
ps
− td
pd

)
(5)

Equation 5 shows that the decision of whether to adopt
the dynamic design hinges on the reconfiguration time, tr.
There are two choices for the dynamic design with different
trade-offs:

• Full reconfiguration, involving reconfiguration of the
entire device. This is relatively simple to implement
since successive configurations can be completely in-
dependent of each other. However, the reconfiguration
time can be long for large devices since the complete
chip is reconfigured.

• Partial reconfiguration, involving reconfiguration of
only the parts that need to be changed. The reconfigura-
tion time is proportional to the amount of FPGA area
that would be changed. However, the design is more
complex since the FPGA has to be specially partitioned
and floorplanned for reconfigurable areas.

In both cases above, since specialised operators are
smaller and faster than the corresponding general-purpose
ones, the dynamic design is faster overall because it has a
shorter cycle time and can support more processing elements
than the static design. Given the area Adesign that is available
for the design under optimisation (i.e. the full device for full
reconfiguration or a partially reconfigurable area for partial
reconfiguration), the reconfiguration time is given by:

tr = φ · θ ·Adesign (6)

where φ is the throughput of the configuration interface and
θ is the configuration size per unit of area. Both values can
be obtained from the device data sheet.

The number of processing cores p that can be imple-
mented in the static and dynamic design versions are:

ps = bAdesign/Asc
pd = bAdesign/Adc

where As and Ad are the area requirements of a static and
a dynamic core respectively. With equations 5 and 6 we
obtain:

1 <
n

tr
·
(

ts
bAdesign/Asc

− td
bAdesign/Adc

)
(7)

If the condition in the above equation is true, then the
dynamic design is faster than the static one. The following
section explains how these parameters can be derived for
European and American option pricing applications.

V. OPTIMISATION FOR OPTION PRICING APPLICATIONS

To estimate the performance and area of a static or
reconfigurable design, we adopt the following model given
that the arithmetic operators within a core dominate the cycle
time and the area. We estimate the cycle time t and area A
in the following way:

• The core cycle time is the maximum of the cycle
times of all n arithmetic operators in the core, i.e.
t = max(top,1, . . . top,n)

• The core area is the sum of the area of all n arithmetic
operators in the core, i.e. A =

∑n
i=1Aop,i

In the case of a European option pricing core as illustrated
in figure 3 there are three multiplications and two additions.
The cycle time and area for the static version can be
estimated as follows:

ts = max(tmult,s, tadd,s)

As = 3 ·Amult,s + 2 ·Aadd,s

To estimate the performance and area of the dynamic
version, we first build specialised versions for all operators
that have constant inputs. In this case, only the multipliers
can be specialised. Hence, the cycle time and area are:

td = max(tmult,d, tadd,s)

Ad = 3 ·Amult,d + 2 ·Aadd,s

We can perform the same optimisations for our American
option pricing core (figure 4):

ts = max(tmult,s, tadd,s, tmax,s)

As = 3 ·Amult,s + 2 ·Aadd,s +Amax,s

td = max(tmult,d, tadd,s, tmax,s)

Ad = 3 ·Amult,d + 2 ·Aadd,s +Amax,s

To evaluate a design according to equation 7, the follow-
ing steps need to be carried out:

1) Build static versions of all arithmetic operators found
in the core, estimate ts and As.

2) Build dynamic versions of operators with fixed inputs,
estimate td and Ad.

3) Determine n from application specification.
4) Determine available design area Adesign . For full

reconfiguration, Adesign is the area of the entire device
minus the area required by other control logic. For
partial reconfiguration, Adesign is simply the area of a
reconfigurable region that is created by the designer.

5) Determine reconfiguration time tr for the entire device
(full reconfiguration), or for a reconfigurable area
(partial reconfiguration). Reconfiguration time can be
measured or calculated according to equation 6.

6) Evaluate design according to equation 7. If the condi-
tion is true, reconfiguration is beneficial.



operator Mult Add Max Mult

type static dynamic
t [ns] 3.11 2.16 2.17 2.49
A [LUT/FF] 5829 54 81 1015

Table I
CYCLE TIME AND AREA OF ARITHMETIC OPERATORS. AREA IS

MEASURED IN LUT/FLIP-FLOP PAIRS.

static dynamic
est. real est. real

t [ns] 3.11 4.76 2.49 4.31
A [LUT/FF] 17676 13759 3234 2977
p 26 34 146 159

Table II
CYCLE TIME, AREA AND NUMBER OF PROCESSING ELEMENTS FOR THE

STATIC AND DYNAMIC CORE. SHOWN ARE THE ESTIMATED VALUES
FROM OUR MODEL (EST.) AND VALUES FOR A REAL DESIGN.

If the above procedure indicates that the dynamic design
is beneficial, then we can specialise the Fine Core with
the given coefficient and implement a Coarse Core with pd
Fine Cores. Based on this Coarse Core we can implement
the entire design with all the necessary infrastructure as
illustrated in figure 2.

VI. EXPERIMENTAL RESULTS

Our FPGA implementation is based on a double-precision
floating-point arithmetic software implementation. The de-
sign is implemented on the FPGA using the FloPoCo gener-
ator [16]. FloPoCo is an open-source generator for floating-
point and fixed-point arithmetic cores. After analysing nu-
merical precision and range, we develop a fixed-point ver-
sion of the algorithm on the FPGA, with customised fixed-
point number formats that provide equal precision. The
fixed-point version is then specialised for dynamic constant
reconfiguration as described in section III. All designs are
implemented on a Xilinx Virtex-6 XC6VLX760 FPGA using
ISE 13.2 implementation tools.

We now estimate the performance and area of static
and dynamic designs based on the optimisation procedure
that is outlined in section V. As step 1 and 2 we build
the required arithmetic operators and measure their cycle
time t and area A. The post place-and-route results for the
three static operators as well as one specialised, dynamic
multiplier are shown in table I. We use these operators to
estimate the performance and area of static and dynamic
versions of an American option pricing core as shown in
figure 4. Table II lists the estimated cycle time and area.
For illustrative purposes, the numbers are compared against
values that are obtained from a real implementations of the
option pricing core.

As step 3 we determine the number of data items n that
need to be processed. Our option pricing application is based

full reconfiguration partial reconfiguration
1 Coarse Core 8 Coarse Cores

configuration SW host fast fast internal [17]
mechanism application external

tr [ms] 1600 115 9
speed-up 0.01 0.18 5.4

Table III
ESTIMATED SPEED-UP OF THE DYNAMIC DESIGN. THE ESTIMATES ARE

BASED ON VARIOUS CONFIGURATION TIMES tr .

on a 3k x 60k grid which means that a total of 1.8 · 106

computations need to be performed.
To calculate the available design area Adesign (step 4) we

first consider full reconfiguration where the entire device
contains only one Coarse Core that is composed of as many
Fine Cores as possible. We obtain the total number of logic
resources from the device data sheet and subtract the logic
resources for control that are shown in figure 2. With Adesign

we can calculate p, the number of Fine Cores that the device
can support (table II).

When reconfiguring our system from a software host
application we measure a reconfiguration time tr of 1.6 s
(step 5) and with this we can evaluate equation 7 (step 6).
For the given parameters, equation 7 is not true which
indicates that reconfiguration will not be beneficial. Table III
lists the estimated speed-up of the dynamic design over
the static one. It can be seen that the dynamic design
is clearly hampered by the long reconfiguration time. We
also estimate the speed-up for the case when the device is
reconfigured with the maximum external configuration speed
of 200 MB/s. This results in a configuration time of 115 ms;
however, this is still slower than the static design.

To improve reconfiguration speed we now explore several
design options using partial reconfiguration. As explained in
section III, we can scale our design by implementing more
Coarse Cores, while reducing the number of Fine Cores in
each Coarse Core. This reduces the size of each Coarse
Core while the overall design size remains constant. Coarse
Cores can be placed in partially reconfigurable areas which
can be reconfigured independently. Hence, an increase in
the number of Coarse Cores leads to smaller reconfigurable
areas and faster reconfiguration. Table III also shows a
design with 8 Coarse Cores that can be partially and inde-
pendently reconfigured. A reconfiguration time of 9 ms can
be obtained with a fast, internal reconfiguration mechanism
that provides a configuration speed of 300 MB/s [17]. With
the significantly reduced reconfiguration time, our estimation
indicates that an overall speed-up can be achieved.

Figure 5 shows performance estimates for designs with
the number of partially reconfigurable Coarse Cores ranging
from 1 to 16. The estimates that are based on single operators
(table I) are compared to results from a fully implemented
option pricing core. We can observe that for a larger number
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Figure 5. Estimated and real performance of the static and reconfigurable
American option pricing design for various numbers of coarse cores.

of Coarse Cores, the dynamic designs can significantly
reduce execution times. In the case of 16 Coarse Cores,
the execution time for pricing one option is reduced from
26.8 ms to 5.7 ms which represents a speed-up by a factor
of 4.7. Our estimation technique that is based on single
operators rather than full core implementations can deliver
these estimates quickly and with sufficient accuracy, as
shown in figure 5.

VII. CONCLUSIONS AND FUTURE WORK

This paper describes a novel approach involving dynamic
reconfiguration of constants for optimising explicit finite dif-
ference option pricing. The approach supports both full and
partial run-time reconfiguration, and our analytical treatment
allows designers to quickly evaluate the conditions for which
the proposed approach would be beneficial.

In a case study on a Virtex-6 XC6VLX760 device,
we show that using area and cycle time parameters from
arithmetic operators is a viable technique for estimating
design performance. A design using full reconfiguration is
not beneficial due to the long reconfiguration time. With
partial reconfiguration, however, we can achieve a 4.7 times
speed-up over a static design.

Our approach is general and can benefit designs with
slow-changing variable data. Current and future work in-
cludes extending the approach to other option pricing ap-
plications as well as PDE solvers in other areas. Another
promising application of dynamic constant reconfiguration
is the recalibration of multi-dimensional grids used in cross-
asset pricing models. Automating our approach would en-
able its adoption as a rapid exploration and implementation
tool for various devices.
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