
USING STATISTICAL ASSERTIONS TO GUIDE SELF-ADAPTIVE SYSTEMS

Tim Todman, Wayne Luk

Department of Computing
Imperial College London

180 Queen’s Gate, London SW7 2AZ
email: {timothy.todman, w.luk}@imperial.ac.uk

Stephan Stilkerich

Software Engineering
EADS Innovation Works

Willy-Messerschmitt Str. 1, 85521 Ottobrunn
email: stephan.stilkerich@eads.net

ABSTRACT
Self-adaptive systems need to monitor themselves, to check
their internal behaviour and design assumptions about run-
time inputs and conditions. This kind of monitoring for
self-adaptive systems can include collecting statistics about
systems themselves which can be computationally-intensive
(for detailed statistics) and hence time-consuming, with
possible negative impact on self-adaptive response time. To
mitigate this limitation, we extend the technique of in-circuit
run-time assertions to cover statistical assertions in hardware.
The presented designs implement several useful statistical
operators that can be exploited by self-adaptive systems. To
illustrate the practicability and industrial relevance of our
proposed approach, we evaluate our designs, chosen from
a class of possible application scenarios, for their resource
usage and the tradeoffs between hardware and software
implementations.

I. INTRODUCTION

Self-adaptive systems can configure themselves to flexibly
deal with changing environments after they are deployed.
The configuration itself is systematically guided by means
of system self-monitoring to aid decisions about changing
modes, or to check design assumptions about runtime data
and conditions or their internal operation. Such monitoring
could check elementary Boolean conditions or, more gener-
ally, could process collected run-time system data, feeding
a process of deciding whether or how the system can be
adapted. The response time to adaptation is a fundamental
feature characterizing self-adaptive systems. For the class
of applications from the avionics domain we investigate, a
fast response time to adaptation is crucial and motivates
our advocated approach, presented in the rest of the paper.
Gathered system data can be used for many purposes: for
example, design assumptions about input range, used to
optimize operator bit-widths, can be checked by assertions
about the standard deviation of the input.

In this paper, we propose in-circuit, statistical assertions,
compiled into the hardware part of a software-hardware

design as a dedicated self-monitoring facility for self-
adaptive systems, with a fast response time to adaptation.
Compared to the proposed in-circuit assertions that can
compute in parallel with the rest of the design, purely
software-implemented assertions need to wait until the
hardware has finished computing its results before they
can process their own tasks. Moreover, efficient hardware
designs are often deeply-pipelined, operating on large
batches of data, further prolonging the time until software
assertions can start processing. Additionally, by prepro-
cessing potentially large amounts of data, in-circuit data
gathering can improve use of limited bandwidth between
hardware and software of the self-adaptive system triggering
and controlling system adaptation. In summary: in-circuit
assertions are the necessary precondition to realize fast
response times to adaptation not realizable by pure software
assertions.

Figure I provides a structural overview of our approach.
A hardware datapath is instrumented by in-circuit statistical
operators which compute relevant statistics about the design.
These are then sent back to a software engine running a self-
adaptive system. The software builds up the self-adaptive
representation which is used to control reconfiguration
of the system. It should be mentioned that whilst we
target a software-hardware system setting, our approach
is not limited to this setting at the outset. The software
could likewise run on a soft processor within a Field
Programmable Gate Array (FPGA) fabric.

This paper makes the following contributions:
• The design and implementation of in-circuit statistical

assertions, which can be used by self-adaptive systems
to monitor themselves and control system adaptation;

• A case study on avionics systems, showing the potential
of in-circuit statistical assertions;

• Evaluation of tradeoffs between assertion implemen-
tations in software and in hardware, showing the
advantages of our proposed in-circuit assertions.

The rest of the paper is organized as follows: the next
section describes related work. Section III shows our designs
for assertions and implementations for Maxeler systems;

Hardware

Software

*
+

SD <s

KEY:

*
SD

Standard
datapath

Statistical
assertions

Software

Self-adaptive engine

 Configurations

Fig. 1. Our approach: hardware datapath augmented with
in-circuit statistical assertions feeding an engine running a
self-adaptive algorithm in software.

section IV is a brief case study for avionics. Section V
evaluates our implementation; section VI concludes and
suggests future work.

II. BACKGROUND
Runtime verification: several researchers have used tem-

poral logic for runtime verification; for example, Reinbacher
et al. [1] implement hardware temporal logic monitors
for a software system running on a soft processor on
the same device. Calinescu et al. [2] propose that self-
adaptive software needs quantitative runtime verification;
our statistical in-circuit assertions could complement such
approaches.

Assertion-based verification allows the use of Boolean
and temporal assertions for debugging designs in simula-
tion [3], extended to in-circuit assertions by Curreri [4].
We extend in-circuit assertions with statistical operators; in
our approach, failed assertions do not necessarily indicate
errors, but may be the trigger for a self-adaptive system to
adapt or reconfigure itself.

Statistical assertions have been proposed by Dinh et
al. [5], as a debug-time method to reason about large parallel
programs – users can reason with derived metrics, rather
than raw program output. The assertions are implemented
efficiently using a map-reduce style computation. We use
statistical assertions for run-time monitoring of reconfig-
urable hardware-accelerated systems.

III. IN-CIRCUIT STATISTICAL ASSERTIONS
This section shows our designs for in-circuit statistical

assertions. Our assertion language comprises C-language
style Boolean operators, augmented by statistical primitives.

We choose the C language as it is familiar to many designers.
The set of statistical primitives is as follows:

• mean(e1), the mean value of expression e1;
• stdev(e1), the standard deviation of expression e1;
• variance(e1), the variance of expression e1.
We choose these as a useful set for expressing statistical

conditions; future work could add further statistical opera-
tors such as covariance, skewness and kurtosis, or limit the
number of cycles over which the statistics are calculated,
potentially reducing hardware resources.

The following shows the grammar of our statistical
assertions language in extended Backus-Naur form:

e = a
| e bop e
| uop e
| mean(e)
| stdev(e)
| variance(e)

bop = == | != | < | > | ...
uop = + | - | ! | ˜

where bop represents any C binary operator, uop any C unary
operator and a any atomic expression (literals, variables,
constants). This language allows the user to combine both
Boolean and statistical operators.

Online algorithms for calculation of statistical met-
rics such as mean, variance and standard deviation are
known [6] [7], which involve a single pass over the input
data, using an accumulator and the current input element.
Whilst this may seem suitable for streaming implemen-
tations, they contain feedback owing to the accumulator.
Chan et al. developed a pairwise algorithm for variance [8]
which can be parallelized; for N input elements, naively
implementing this algorithm on streaming systems requires
O(NlogN) hardware. Chan et al’s algorithm denotes the
sum and mean of data points xi as Tij and Mij respectively:

Tij =

j∑
k=i

xk Mij =
1

j − i+ 1
Tij

and the sum of squares Sij :

Sij =

j∑
k=i

(xk −Mij)
2

calculated by their pairwise algorithm:

S1,2m = S1,m + Sm+1,2m +
1

2m
(T1,m − Tm+1,2m)2

We propose two designs suitable for streaming systems: a
systolic design adapted from Chan’s parallel algorithm, and
a C-slowed variant of the online algorithm. Figure 2 shows
the datapath for the systolic design, combining stream offsets
with Chan’s pairwise operators for calculating variance or
mean; for clarity, we omit the calculation of Ti,j , which

-1

S -2

S -4

S -8

S

KEY:

S
Pairwise
operator

Stream
offset-16

x
n

x
n-1

S
n-1,n

S
n-3,n-2

S
n-3,n

S
n-7,n-4

S
n-7,n

S
n-15,n-8

S
n-15,n

-16

S

S
n-31,n-16

S
n-31,n

Fig. 2. Systolic partial calculation of variance using pairwise
operators.

has the same pattern. Note that the leftmost operator can
be optimized, because Si,i = 0 (the variance of a single
point is zero). The systolic design uses the observation that
in a streaming system, iterating through the input data in
order, sums of neighbouring elements can be accessed by
stream offsets, so using Chan et al’s notation:

T1,2k = T1,2k−1 + T2k−1+1,2k

= T1,2k−1 + offset(T1,2k−1 ,−2k)

where offset(e, n) means the value of expression e
sampled n cycles in the past; S1,2k is calculated in the
same way. Unlike the naive implementation of Chan et
al’s algorithm, which requires O(NlogN) hardware, this
requires O(logN) statistical operators plus O(N) delay
elements used to implement the offset operation.

Note that this only calculates part of the variance,
specifically the local variance around each sample; however,
it greatly reduces the amount of data sent back to software.
The design consists of repeating units of the pairwise
operator and stream offsets to delay the input. Each
repeating unit reduces both the output data and the remaining
calculations to be done in software by half, so K units
reduces it 2K-fold.

Implementation targeting Maxeler streaming designs: we
choose Maxeler streaming systems to implement our designs,
though the approach is not Maxeler-specific, and can be
ported to other design descriptions such as Verilog and
VHDL. We focus on a systematic approach to translating as-
sertions into Maxeler designs; future work could implement
a compiler from Maxeler designs extended with statistical
assertions into the base language.

The Maxeler system generates streaming designs, where
inputs and outputs are large arrays used as streams. Each

output element is calculated from corresponding elements
in one or more input streams; offsets allow reading from
neighbourhood stream elements. The user programatically
builds a datapath using a domain-specific language based on
Java. The control path may be counters or state machines
generated from another domain-specific language.

Maxeler tools compile designs into hardware description
languages and control FPGA vendor tools to build a
reconfigurable device bitstream implementing a design.
Software can interact with the generated hardware using a
Maxeler application programming interface to configure the
FPGA device with the bitstream and run on user data stored
in C arrays. The Maxeler tools automatically pipeline the
datapath, resulting in deeply-pipelined operators at a high
clock rate. This works well for feed-forward designs, but
feedback requires some manual intervention and reordering
or duplicating of input data.

IV. CASE STUDY: AVIONICS SYSTEMS
Avionics systems are electronic systems used for control

or information in the aviation or aerospace industries [9].
Self-adaptive systems with a fast response to adaptation

(where fast means quicker than 500ms), are promising
architectures for dedicated application scenarios in the
avionics and space-flight industry. Systems that profit from
architectures with fast response time to adaptation are:

• autonomous flying systems,
• special satellites,
• deep-space mission systems,
• exploratory space mission systems.
All these systems operate in environments that can not

fully be described right from the beginning and hence the
systems cannot be statically designed to cover and handle
all environmental settings. Furthermore, these systems
have strong constraints on power consumption, weight and
packaging volume. Additionally, these systems may never
be reachable after deployment.

We choose a 500ms limit as this duration fits perfectly
into most processing and control-loops of the systems and
application scenarios mentioned in the paper. Hence, if
we realize our self-adaptation and self-expression with
the configuration within this limit, it would seamlessly
fit into our systems, applications and the already available
developed systems.

We analyze the processing structure of these systems for
the functionality of guidance, navigation and orientation,
revealing that the processing is composed of different
blocks/kernels with inputs and outputs. Determining the
adequate bit-widths and hence precision for the inputs
and outputs is difficult and is today based on worst-case
assumptions involving unnecessary resources. An alternative
is to start with an initial, more optimistic design assumption
about the input/output range, used to optimize operator

bit-widths. Such assumptions can be checked by assertions
about the standard deviation of the input and adapted by
another kernel-version accordingly if required. Obviously,
fast response time to adaptation is to avoid compromising
system functionality, and to simultaneously optimize the
system at run-time with respect to energy efficiency and
environmental adaptability.

V. EVALUATION

We evaluate our implementations of on-chip statistical
assertions showing the tradeoff between hardware and
software implementations. We compare: 1) scalability:
operator size versus hardware size; 2) software statistics
versus hardware-assisted: speed, bandwidth.

Experimental setup: we implement our designs using
Maxeler compiler version 2012.1 and Xilinx ISE 13.1.
Designs target a MAX3 system, containing a Xilinx
xc6vsx475t FPGA, with a speed goal of 200MHz. We
implement a single variance assertion, with 32-bit input
data in IEEE Single-Precision (SP) floating-point format,
one data element per cycle.

Figure 3 shows the effect of unroll factor on the area
resources for the systolic variance operator; the area is
measured in Look-Up Tables (LUTs), Flip-Flops (FFs) and
Digital Signal Processing (DSP) blocks. The area cost is
linearly proportional to the unroll factor (for LUTs and
FFs), but the output data reduction factor is exponential:
increasing the unroll factor by one halves the output volume.
For unroll factor 15, the data reduces by 215 and the variance
takes about 5% of flip-flops, 8% of other resources. For
LUTs and FFs there is also a small fixed cost which is due
to the Maxeler runtime system used to communicate with
the host. The cost in block RAMs (BRAMs) is exponential
in the unroll factor, as they are used to store delayed stream
elements used to calculate the offset expressions; however,
the cost is still modest even for large unroll factors.

The C-slowed design uses a small fixed area per assertion
(about 3.5% of LUTs, 2% of FFs for 32-bit SP variance).
For 32-bit SP data, the pipeline is 85 stages long, padded
to 128 stages. The data are reduced to 128 partial variances,
which can be further reduced to a single variance by Chan
et al’s method. The design runs at 300MHz.

Case study: avionics: we assume a hard 0.5s limit for
hardware run time. Figure 4 shows estimated run times
versus number of statistical assertions for both software and
hardware implementations. We assume the design is limited
by the bandwidth between software and hardware (MAX3
has 2GB/s maximum speed); stream length is 226, each
output is 4 bytes wide, so the run time with no assertions
is 0.15 seconds. Software calculations are limited to two
assertions within the time limit, because all 226 values must
be streamed across the bus for each exception. In contrast,
the C-slowed design summarizes 226 data to 128 values,

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 2 4 6 8 10 12 14

n
u
m

b
e
r

unroll factor

LUTs
FFs

BRAMs * 100
DSPs * 100

Output reduction factor

Fig. 3. Area usage and output reduction versus unroll factor
for systolic variance operator.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 2 4 6 8 10

ru
n
ti
m

e
 /
 s

number of variance assertions

software variance
C-slowed hardware variance

real-time limit
Systolic hardware variance, 1 unit

Systolic hardware variance, 2 units

Fig. 4. Estimated time taken by software and C-slowed
hardware variance assertions versus number of assertions.

meaning the time cost of each exception is much lower.
Systolic hardware designs allow the number of assertions to
be traded for hardware area. Note we do not include time
to calculate the variance on the host.

VI. CONCLUSION
To allow efficient monitoring for self-adaptive systems,

we design and implement in-circuit statistical assertions,
allowing designs to use several frequently-occurring sta-
tistical operators to express desired runtime properties of
design inputs, outputs and internal signals. Results show
that response time can be greatly reduced at a modest cost
in hardware area per exception.

Current and future work includes enlarging the set of
statistical primitives to allow more general assertions on
the state of the design. We would also like to explore
the interaction of the statistical operators with run-time

reconfiguration. Statistical conditions can be used to decide
when to reconfigure. More generally, the statistics operators
themselves can be reconfigured, allowing the system to alter
the balance of configurable hardware between assertions
and computation depending on runtime conditions.

Acknowledgements: The research leading to these results has
received funding from the European Union Seventh Framework
Programme under grant agreement numbers 257906 and 287804.

VII. REFERENCES
[1] T. Reinbacher, M. Függer, and J. Brauer, “Real-time runtime

verification on chip,” in Runtime Verification, ser. Lecture
Notes in Computer Science, S. Qadeer and S. Tasiran, Eds.
Springer Berlin Heidelberg, 2013, vol. 7687, pp. 110–125.

[2] R. Calinescu, C. Ghezzi, M. Kwiatkowska, and R. Mirandola,
“Self-adaptive software needs quantitative verification at run-
time,” Communications of the ACM, vol. 55, no. 9, pp. 69–77,
2012.

[3] S. Vasudevan, “What is assertion-based verification?” SIGDA
E-News, vol. 42, no. 12, December 2012.

[4] J. Curreri, G. Stitt, and A. D. George, “High-level synthesis
of in-circuit assertions for verification, debugging, and timing
analysis,” International Journal of Reconfigurable Computing,
vol. 2011, 2011.

[5] M. N. Dinh, D. Abramson, J. Chao, D. Kurniawan,
A. Gontarek, B. Moench, and L. DeRose, “Debugging
scientific applications with statistical assertions,” Procedia
Computer Science, vol. 9, no. 0, pp. 1940 – 1949, 2012,
proceedings of the International Conference on Computational
Science, (ICCS) 2012.

[6] D. E. Knuth, The Art of Computer Programming, volume 2:
Seminumerical Algorithms, 3rd ed. Addison-Wesley, 1998.

[7] B. P. Welford, “Note on a method for calculating corrected
sums of squares and products,” Technometrics, vol. 4, no. 3,
pp. pp. 419–420, 1962.

[8] T. F. Chan, G. H. Golub, and R. J. LeVeque, “Updating
formulae and a pairwise algorithm for computing sample
variances,” Department of Computer Science, School of
Humanities and Sciences, Stanford University, Tech. Rep.
STAN-CS-79-773, November 1979.

[9] R. P. G. Collinson, Introduction to avionics systems, 2nd ed.
Kluwer, 2003.

