
An automatic tool flow for the combined
implementation of multi-mode circuits

Brahim Al Farisi, Karel Bruneel, João M. P. Cardoso and Dirk Stroobandt
Ghent University, ELIS Department

Sint-Pietersnieuwstraat 41, 9000 Gent, Belgium
Brahim.AlFarisi@UGent.be

Abstract—A multi-mode circuit implements the functionality of
a limited number of circuits, called modes, of which at any given
time only one needs to be realised. Using run-time reconfiguration
of an FPGA, all the modes can be implemented on the same
reconfigurable region, requiring only an area that can contain the
biggest mode. Typically, conventional run-time reconfiguration
techniques generate a configuration for every mode separately.
To switch between modes the complete reconfigurable region is
rewritten, which often leads to very long reconfiguration times.
In this paper we present a novel, fully automated tool flow
that exploits similarities between the modes and uses Dynamic
Circuit Specialization to drastically reduce reconfiguration time.
Experimental results show that the number of bits that is
rewritten in the configuration memory reduces with a factor
from 4.6× to 5.1× without significant performance penalties.

I. INTRODUCTION

The inherent reconfigurability of SRAM-based FPGAs en-
ables the use of different configurations at different time inter-
vals, each optimized for the specific task in the corresponding
time interval. This is called run-time reconfiguration (RTR).
Using RTR, global area can be reduced by reusing FPGA
resources between circuits.

The conventional way of building RTR systems is called
Modular Dynamic Reconfiguration [1]. Using this technique,
different designs, or modules, can be implemented on the same
FPGA area, called the reconfigurable region. For every module
a configuration is generated by implementing it separately
in the reconfigurable region. To switch between the different
modules during run-time, the complete reconfigurable region
is rewritten with the appropriate configuration. Since a whole
area needs to be rewritten, this often leads to very long
reconfiguration times [2].

A new, more fine-grained, approach to RTR is Dynamic
Circuit Specialization [3]. The tool flow for Dynamic Circuit
Specialization starts from an HDL description in which slowly
varying signals, called parameters, are annotated. From this
description a parameterized FPGA configuration is generated.
This is a configuration in which most of the bits are static and
only some of the bits, called parameterized bits, correspond to
Boolean functions of the parameters. To specialize the FPGA
for specific parameter values, only the Boolean functions need
to be evaluated and rewritten in the configuration memory.
Since the number of these bits is limited, reconfiguration time
can be reduced drastically [3].

A multi-mode circuit implements the functionality of a
limited number of circuits, called mode circuits or modes,
of which at any given time only one needs to be realised.
Also, different modes will often exhibit much similarity, since
the same functional blocks are used to build up the circuit.
An example of a multi-mode circuit is a mobile transceiver
that supports different communication standards (like 3G and
Wi-Fi), but only uses one at any given time. In this case,
every mode is a circuit that contains the necessary functions
to support the corresponding communication standard. Since
the different modes are mutually exclusive in time, hardware
sharing techniques can be considered to optimize area, power
and execution time.

Using run-time reconfiguration of an FPGA, all the modes
of a multi-mode circuit can be implemented on the same FPGA
area, requiring only an area that can contain the biggest mode.
In this paper we present a new, fully automated flow that
exploits similarities between the modes and uses Dynamic
Circuit Specialization to reduce reconfiguration time. For typ-
ical multi-mode circuits, experimental results show a 4.6× to
5.1× reduction in reconfiguration time compared to Modular
Dynamic Reconfiguration. In this flow, we introduce a novel
wire-length driven approach for the combined implementation
of different mode circuits that clearly outperforms a previously
proposed circuit edge matching technique.

Our paper starts with an overview of the RTR techniques
considered in this paper in Section II. In Section III, we
explain how we exploit similarities between the modes and
use Dynamic Circuit Specialization to generate an efficient
parameterized configuration for multi-mode circuits. The ex-
periments and results are discussed in Section IV. Finally, we
conclude in Section V.

II. RUN-TIME RECONFIGURATION

With run-time reconfiguration (RTR) it is possible to imple-
ment different functions, that are not needed at the same time
in the system, on the same FPGA area. This area is generally
called the reconfigurable region. Whenever one wants to
change between these functions a period of time is needed,
called the reconfiguration time, to rewrite the configuration
memory. The subsystem that performs the reconfiguration is
called the reconfiguration manager and is generally imple-
mented in software. In this section we will discuss two tech-
niques that use run-time reconfiguration: Modular Dynamic978-3-9815370-0-0/DATE13/ c© 2013 EDAA

Fig. 1: (a) Conventional FPGA tool flow (b) Dynamic Circuit
Specialization (DCS) tool flow

Reconfiguration and Dynamic Circuit Specialization.

A. Modular Dynamic Reconfiguration

The Modular Dynamic Reconfiguration (MDR) tool flow
implements every function, also called a module, separately in
the reconfigurable region by following the typical steps of the
FPGA CAD flow (synthesis, technology mapping, placement
and routing) as shown in Figure 1(a). For every module a
configuration is generated, that contains the binary values
needed to write the configuration memory of the reconfig-
urable region. To switch between the different modules the
reconfiguration manager writes the complete reconfigurable
region with the appropriate configuration. Since a whole area
needs to be rewritten, this often leads to very long reconfigu-
ration times [1].

When implementing a multi-mode circuit with MDR, every
mode will be placed in a separate module.

B. Dynamic Circuit Specialization

Figure 1(b) shows the Dynamic Circuit Specialization
(DCS) tool flow compared to the conventional FPGA tool
flow. The intermediate representations used in the two flows
are also depicted. The DCS tool flow takes in a HDL de-
scription in which the slowly varying inputs are annotated
as parameters. The tool flow then automatically generates a
parameterized configuration, where a limited amount of bits
are expressed as Boolean functions of the parameters. When
the parameters change value the reconfiguration manager only
has to re-evaluate these Boolean functions and write them in
the configuration memory.

The synthesis step in the DCS tool flow is very similar
as in the conventional tool flow but the technology mapping
step is fundamentally different. A conventional technology
mapper generates a network of logic blocks, each consisting
of a combination of a look-up table and a flip-flop. The truth
table entries of the look-up table and the bit that controls the
selection of the sequential output are constant zeros and ones.
We will further refer to logic blocks simply as look-up tables
or LUTs. An example of a 2-input LUT is shown on the left
in Figure 4.

The TMAP technology mapper used in DCS, on the other
hand, maps the parameterized design onto a Tunable cir-
cuit [4]. This is a network of Tunable logic blocks, in short
Tunable LUTs or TLUTs, which are logic blocks of which
the configuration bits are expressed as a Boolean expression
of the parameters. On the right side of Figure 4 an example
is shown of a 2-input Tunable LUT. On the bottom side of
Figure 3 one can find an example of a Tunable circuit.

Moreover, in contrast with a normal LUT circuit, that
contains regular connections, the Tunable LUTs are connected
with Tunable connections. These connect a source and a
sink, like regular connections, but each Tunable connection
is also associated with a Boolean expression that is called
the activation function. A Tunable connection only needs to
be realised for the parameter values for which the activation
function evaluates to True.

TPlace and TRoute, the adapted placer and router in the
DCS tool flow, can further refine the Tunable circuit to a pa-
rameterized configuration in which some of the configuration
bits are expressed as Boolean functions of the parameters [5].

The DCS tool flow provides a way for specializing one
design for certain inputs using RTR. It takes one annotated
HDL file as input. For multi-mode circuits, however, we
want to implement several circuits, each represented by its
own HDL description. In the next section we will present
an automated tool flow that allows to implement multi-mode
circuits using DCS.

III. GENERATING A PARAMETERIZED CONFIGURATION
FOR MULTI-MODE CIRCUITS

We first assume the mode circuits are numbered and express
this number in a binary fashion. If there are for example 3
modes, we will need 2 bits m1m0 to express the mode.

The fully automated tool flow we propose, as shown in
Figure 2(b), takes in the HDL descriptions of the different
modes and generates a parameterized configuration, in which
some of the bits are expressed as a boolean expression of the
mode, for example 1, 0, 0,m1.m0,m0, 1, 0.... The tool flow is
clearly a combination of the MDR and DCS tool flows. The
MDR tool flow is followed up until the technology mapping,
thus generating a circuit of LUTs for every mode. In the
following step the LUT circuits are merged into one Tunable
circuit that is further implemented in the reconfigurable region
using the TPlace and TRoute step of the DCS tool flow.
The proposed tool flow thus reuses much of the steps of the
MDR and DCS tool flows. The key step in our tool flow
and the main contribution of this paper, is the merging of
different LUT circuits into one Tunable circuit, as is shown in
Figure 3. It is in this step that we developed novel, automatic
techniques that exploit similarities between the modes to
reduce reconfiguration time.

Merging of several LUT circuits into a Tunable circuit
consists of two steps:

1) determine which LUTs will be implemented using the
same Tunable LUT;

Fig. 2: The tool flow of Modular Dynamic Reconfiguration
(a), compared to our approach which uses a merge and
Dynamic Circuit Specialization (b).

2) the annotation of the connections with the appropriate
activation function to generate the Tunable connections.

Indeed, we essentially have one degree of freedom gener-
ating a Tunable circuit, we have to determine which LUTs
will be implemented using the same Tunable LUT. Of course,
only LUTs belonging to different modes can be combined
in the same Tunable LUT. Once this is decided, generating
the parameterized bits of the Tunable LUT is very straight-
forward, as is shown in the example in Figure 4. Every mode
circuit corresponds to a Boolean product that evaluates to True
for the appropriate mode value. For example, when the mode
m1m0 is 10 the Boolean product is m1.m0. The bits of a
LUT are first multiplied (AND) with the Boolean product of
the mode circuit the LUT belongs to. The corresponding bits
of the different LUTs are then added (OR) to generate the
Boolean expressions that represent the parameterized bits of
the Tunable LUT. For example, for the highest bit of the truth
table in Figure 4 we get m0.1+m0.0 which simplifies to m0.
We note that when evaluating the Tunable LUT on the right
for a certain mode value, the correct bit values for the LUTs
on the left are obtained. Using the method above, a Tunable
LUT can implement any combination of LUTs, as long as they
belong to different modes.

The topology of the Tunable circuit is determined, once it
is decided which LUTs are implemented in the same Tunable
LUT. The connections initially connecting the LUTs will
simply connect the corresponding Tunable LUTs. To generate
the Tunable connections, the connections of all the modes
are annotated with an activation function that consists of the
Boolean product that corresponds to the mode circuit the con-
nection belongs to. When connections have the same source
and sink they can be merged into one Tunable connection of
which the activation function is an addition of the Boolean
products of the connections. An example is given in Figure 3.
In this figure, connections that are used in both modes have
as activation function m0 + m0 which simplifies to True or
1. In Figure 3 we simply implement the LUTs with the same

Fig. 3: Merging two LUT circuits into a Tunable circuit.

index using the same Tunable LUT. There are however many
ways to combine the different LUTs in one Tunable LUT,
each generating a Tunable circuit with a different topology. To
obtain an efficient Tunable circuit, we have developed a novel
technique, called combined placement, which is explained in
the following section.

A. Combined placement

Given a placement of all the mode circuits on the recon-
figurable region, a Tunable circuit can easily be extracted.
The LUTs positioned on the same physical LUT will be
implemented using the same Tunable LUT. Using such a
combined placement strategy allows to assess both topology
and placement quality of the Tunable circuit. In this section
we will explain how we extended the conventional placement
algorithm to place several LUT circuits simultaneously.

A conventional FPGA placement algorithm takes two in-
puts: the mapped input circuit and a description of the target
FPGA architecture. The algorithm searches a legal placement
for the logic blocks of the input circuit so that circuit wiring

Fig. 4: Generating parametrised Tunable look-up table bits.

is optimised. In a legal placement every LUT is associated to
(placed on) one of the physical LUTs (without overlap).

The conventional placement tool is based on simulated an-
nealing. The algorithm starts by randomly, but legally, placing
the functional blocks in the input circuit on physical blocks of
the FPGA architecture. Afterwards, the placer repeatedly tries
to improve the placement cost by interchanging the functional
blocks placed on two randomly chosen physical blocks. Such
an interchange is called a swap.

We extended the conventional placement tool to accom-
modate the simultaneous placement of several LUT circuits.
First, the LUTs of all the modes are placed randomly on the
reconfigurable region. In the conventional placement only one
LUT is allowed per physical LUT. In the case of the combined
placement, however, LUTs belonging to different modes can
be placed on the same physical LUT.

During the combined placement, selecting a swap consists
of two steps: choosing two random physical blocks and
selecting a mode for which the swap will be executed. Only
the LUTs placed on the chosen physical LUTs belonging to
the selected mode will be interchanged, the LUTs of the other
modes maintain their position.

B. Optimization options

Using the method described in the introduction of III, a
Tunable LUT can implement any combination of LUTs as
long as they belong to different modes. The approach taken
in this paper is to use this degree of freedom to optimize
the implementation of the Tunable connections of the Tunable
circuit. Indeed, the configuration memory consists mostly of
routing bits, thus it is logical to focus on reduction of routing
reconfiguration time. In this paper we consider two different
approaches to achieve this goal during the combined placement
step: circuit edge matching and wire-length optimization.

The circuit edge matching technique tries to reduce the
number of Tunable connections by placing the LUTs of the
different modes in such a way that the number of connections
that have the same source and sink is maximized. As was
explained earlier, connections of different modes that have
the same source and sink can be merged into one Tunable
connection. It is obvious that when one changes between
these modes no switches need to be turned in the routing for
the merged Tunable connection. Circuit edge matching thus
reduces the number of parameterized bits in the routing.

Circuit edge matching was first proposed in [6]. However,
these authors did not have a router that could route the wires
of the different mode circuits simultaneously. In addition, no
results regarding reconfiguration time were presented.

Circuit edge matching only looks at the topology of the Tun-
able circuit that is formed and does not take into account the
placement of the Tunable LUTs. However, using a combined
placement strategy the information regarding the placement of
the LUTs allows to asses the wire usage of the Tunable circuit.
To achieve this goal, the cost function used in the wire-length
optimization approach uses an estimation of the wire length
TRoute will need to route the Tunable circuit. The wire-length

estimation used during the combined placement is the same
as the one TPlace uses during the placement of the Tunable
circuit after merging.

IV. EXPERIMENTS AND RESULTS

A. Benchmarks

To validate our proposed tool flow we conducted exper-
iments using 3 different applications. In the first 2 experi-
ments typical multi-mode applications were used: a regular
expression matching (RegExp) and adaptive filtering applica-
tion (FIR). In [7] a tool was developed that can generate a
hardware engine, written in VHDL, that matches a certain
regular expression. In the first experiment, we chose 5 regular
expressions out of the Bleeding Edge rules set [8] and with this
tool generated the corresponding circuits. Then 10 multi-mode
circuits were generated by picking all possible combinations
of 2 circuits out of the 5 generated circuits. In the second
experiment we combined 10 low pass and 10 high pass finite
impulse response (FIR) filters into 10 multi-mode circuits. The
non-zero coefficients were chosen randomly, after which all
the constants were propagated. Such a FIR filter is 3 times
smaller than the generic version.

Finally, in the third experiment, we chose 5 circuits out of
the general MCNC benchmark suite [9] that were of similar
size compared to the rest of the circuits in these experiments.
Afterwards we generated 10 multi-mode circuits by making
all possible combinations of 2 circuits.

For every set of mode circuits the minimum, average and
maximum number of LUTs are reported in Table I.

B. FPGA architecture

The combined placement algorithm was implemented based
on our Java version of the VPR (Versatile Place and Route)
wire-length driven placer [10]. VPR is the most commonly
used academic tool for place and route algorithms. The FPGA
architecture used for each of the implementations, is described
in 4lut_sanitized.arch. This is an FPGA architecture
file included in the distribution of VPR. It has logic blocks
containing one 4-LUT and one flip-flop and the wire segments
in the interconnection network only span one logic block. We
note that the techniques and tools we use in this paper are
independent of the architecture used. The number of inputs of
the LUTs is simply an input parameter of the tool flow. Also,
different routing architectures can be used since TRoute uses
a standard representation of the routing infrastructure called
the routing resource graph [10].

Since there is no other functionality implemented on the
FPGA, the reconfigurable region comprises the complete

TABLE I: Size of the LUT circuits used in the experiments.

Minimum Average Maximum
RegExp 224 243 261
FIR 235 302 371
MCNC 264 310 404

RegExp FIR MCNC
0

1

2

3

4

5

6

7

8
Sp

ee
d

up
 re

la
tiv

e
to

 M
D

R
Reconfiguration speed up

MDR (base)
DCS−Edge matching
DCS−Wire length

Fig. 5: Reconfiguration speed up of DCS compared to MDR.

FPGA in our experiments. As recommended in [10], the square
area of the FPGA and the channel width were both chosen
20% bigger than the minimum needed. This is done to allow
relaxed routing.

C. Results

We point out that both our tool flow, from now on shortly
referred to as DCS, and MDR have the same gains in area. For
the regular expression matching application and the MCNC
benchmarks, only an area of around 50% is required compared
to the static implementation of the 2 modes. The adaptive
filtering application requires an area which turned out to be
only 33% of the generic FIR filter.

Two other metrics were used to further evaluate the quality
of the multi-mode circuit: reconfiguration time and wire-
length. The reconfiguration time gives an indication on how
fast the system can adapt to an environmental change. Wire
length is an important metric for the quality of a circuit, since it
correlates with power usage and performance (maximum clock
frequency) of a circuit [10]. In each experiment we compare
the circuit edge matching and wire-length optimization ap-
proach to conventional MDR. We average the results over the
implemented circuits and use error bars to indicate minimum
and maximum values.

1) Reconfiguration time: Since the academic VPR frame-
work is used, we could not measure an actual reconfiguration
time. Instead we assume the reconfiguration time is directly
proportional to the number of bits that needs to be rewrit-
ten in the configuration memory. In the case of MDR, the
reconfiguration time is the time needed to write the complete
reconfigurable area [1]. This comprises the bits of all the LUTs
and all the bits that control the switches in the routing. As
mentioned earlier, in the DCS case we also assume that all
the LUTs are rewritten. We do however count only the bits
in the routing that are parameterized. We assume the Boolean
functions of the parameterized bits are evaluated off-line.

In Figure 5 we can see that, for typical multi-mode applica-
tions, DCS reaches a speed up of the reconfiguration process,

RegExp−MDR RegExp−Diff RegExp−DCS
 0%

 10%

 20%

 30%

 40%

 50%

 60%

 70%

 80%

 90%

100%

R
el

. c
on

tri
bu

tio
n

of
 L

U
Ts

 a
nd

 ro
ut

in
g

in
 re

co
nf

. t
im

e

Rel. contribution of LUTs and routing in reconf. time

LUT
Routing

Fig. 6: Relative contribution of LUTs and routing in the
reconfiguration time.

compared to MDR, between 4.6× and 5.1×. An interesting
observation is that the circuit edge matching technique and
the wire length optimization technique achieve approximately
the same speed up. This is explained by the fact that when
connections match, the wire length also tends to decrease.
Optimizing for wire length will thus also match connections,
but will at the same time take wire length into consideration
as we will see in the next section.

Where does this significant speed up come from? In Figure 6
we break down the reconfiguration time into the time needed
for reconfiguring LUTs and routing for the regular expression
matching application. We see that the number of rewritten
LUT configuration cells is indeed the same, but in the case of
DCS the number of routing configuration cells that is rewritten
is reduced drastically compared to MDR with a factor of ap-
proximately 20. This factor consist of 2 components. The first
is related to the fact that MDR is region based. Many memory
cells will be rewritten with the same value, mostly zeros due
to the programmability of the FPGA. To analyse this effect,
we added a bar annotated with RegExp-Diff. This represents
the case where also all LUTs are rewritten, but only the cells
in the routing configuration memory that contain different bit
values for the different modes are counted. We see that the first
component accounts for a factor 5. The second component is
due to our novel combined implementation strategy. We see the
number of cells in the routing configuration memory that have
a different value in the different modes is further reduced with
a factor of 4 compared to MDR, thus proving the efficiency
of our approach.

In current FPGAs, the reconfiguration granularity is a col-
lection of bits called a frame. LUTs and routing memory cells
reside in different frames. The next step in our research is
to implement TRoute on a commercial FPGA to asses the
reduction it will have in routing configuration frames that need
to be reconfigured. We also plan to extend it to allocate the
small number of parameterized bits in a limited amount of
frames. By reconfiguring only these frames we can further

RegExp FIR MCNC
 0%

 50%

100%

150%

200%

250%

300%
N

um
be

r o
f w

ire
s

re
la

tiv
e

to
 M

D
R

Number of wires

MDR (base)
DCS−Edge matching
DCS−Wire length

Fig. 7: Wire length of DCS compared to MDR.

reduce reconfiguration time. Given the analysis above we
expect the speed up of routing reconfiguration time to be
roughly between 4× and 20×.

In this paper we focused on reducing routing configuration
cells that need to be rewritten. For the sake of simplicity we
always assumed to write the configuration cells of all LUTs
in the reconfigurable region. We point out that our results
would even improve if we would count only the LUT bits
that have a different value for the different modes, since this
would increase the routing to LUT ratio.

2) Wire length: In our proposed tool flow the different
modes are not implemented separately, as is the case in MDR,
but instead a global solution is considered to generate an
efficient Tunable circuit, as is explained in section III-A. In
this section we assess the impact this has on the wire length.
Each mode circuit uses a set of wires when it is active. We
compare the size of this set in the case of implementation with
MDR and DCS. This is averaged over all mode circuits.

Figure 7 shows the relative wire-length increase of an
individual mode for the edge matching and the wire length
optimization compared to MDR. We can clearly see that
wire-length optimization significantly outperforms circuit edge
matching. It seems that wire length is best optimized dur-
ing the combined placement, when the Tunable circuit is
formed, and not after, with TPlace, when the topology of
the Tunable circuit is fixed. When the previously proposed
circuit edge matching is used, the wire-length sometimes
increases unacceptably with a factor of more than 2. For
our novel wire-length optimization approach we see for all
applications a 24% increase in wire length on average. For our
target applications, regular expression matching and adaptive
filtering, the minimum and maximum increase are 11% and
35%, respectively.

Note that many applications do not run at their maximum
performance, because system requirements are not that strin-
gent. Since FPGAs are mostly used for parallel applications,
like regular expression matching, they rely more on massive
parallelism than on high clock frequencies for performance.
For many applications, the increase in wire-length is therefore

not a major draw back, especially given the significant speed
up of the reconfiguration process. Also the current placer and
router for Tunable circuits, TPlace and TRoute, are not as
mature as the conventional placer and router. As the tools
evolve, we expect the results to further improve.

For the general MCNC circuits the wire-length depends
more on the similarity between the circuits, which explains the
higher maximum increase in wire length of 45% and higher
spreading of the results.

V. CONCLUSION

In this paper we presented a fully automated tool flow
that exploits similarities between the different modes of a
multi-mode circuit and uses Dynamic Circuit Specialization
to drastically reduce reconfiguration time. In our experiments
we showed that for typical multi-mode applications a speed
up between 4.6× and 5.1× of the reconfiguration process
can be obtained compared to MDR. Of course, this doesn’t
come for free, the wire length of the different modes will
increase slightly due to our combined implementation ap-
proach. In our experiments we showed that our novel wire
length optimization approach clearly outperforms a previously
proposed circuit edge matching technique. For typical multi-
mode circuits, and using a wire length optimization approach,
the increase in wire-length of an individual mode compared
to MDR is on average 24% and between 11% and 35%.

ACKNOWLEDGMENT

This work was supported by the European Commission in the
context of the FP7 FASTER project (#287804). Brahim Al Farisi
is sponsored by IWT, Agency for Innovation through Science and
Technology in Flanders.

REFERENCES

[1] P. Sedcole, B. Blodget, T. Becker, J. Anderson, and P. Lysaght, “Modular
dynamic reconfiguration in Virtex FPGAs,” Computers and Digital
Techniques, vol. 153, no. 3, pp. 157 – 164, 2006.

[2] K. Papadimitriou, A. Dollas, and S. Hauck, “Performance of partial
reconfiguration in FPGA systems: A survey and a cost model,” ACM
TRETS, vol. 4, no. 4, pp. 36:1–36:24, Dec. 2011.

[3] K. Bruneel, W. Heirman, and D. Stroobandt, “Dynamic data folding with
parameterizable FPGA configurations,” ACM Transactions on Design
Automation of Electronic Systems, vol. 16, no. 4, p. 29, 2011.

[4] K. Heyse, K. Bruneel, and D. Stroobandt, “Mapping logic to recon-
figurable FPGA routing,” in 22nd International Conference on Field
Programmable Logic and Applications, Proceedings, 2012, pp. 315–
321.

[5] E. Vansteenkiste, K. Bruneel, and D. Stroobandt, “A connection router
for the dynamic reconfiguration of FPGAs,” in Lecture Notes in Com-
puter Science. Springer, 2012, pp. 357–364.

[6] M. Rullmann and R. Merker, “Maximum edge matching for recon-
figurable computing,” Parallel and Distributed Processing Symposium,
International, vol. 0, p. 179, 2006.

[7] I. Sourdis, J. Bispo, J. Cardoso, and S. Vassiliadis, “Regular expression
matching in reconfigurable hardware,” Journal of Signal Processing
Systems, vol. 51, pp. 99–121, 2008, 10.1007/s11265-007-0131-0.
[Online]. Available: http://dx.doi.org/10.1007/s11265-007-0131-0

[8] Bleeding edge threats website. [Online]. Available:
http://www.bleedingthreats.net

[9] S. Yang, “Logic synthesis and optimization benchmarks user guide
version 3.0,” 1991.

[10] V. Betz, J. Rose, and A. Marquardt, Eds., Architecture and CAD for
Deep-Submicron FPGAs. Norwell, MA, USA: Kluwer Academic
Publishers, 1999.

