

FACILITATING ANALYSIS AND SYNTHESIS TECHNOLOGIES FOR EFFECTIVE RECONFIGURATION

Key Innovation

* * * * * * *

Motivation

- Creation of reconfigurable systems is not straightforward
- . The designer has to
 - Identify the portions to be reconfigured
 - Establish a schedule that (a) respects dependencies, while at the same time (b) performs well and (c) meets constraints such as power, area and reconfiguration time
 - Manage the system resources (mainly reconfigurable area)
 - Verify a **changing** system
- Tool support for these tasks is esoteric to say the least
- . Resource management is up to the user
- . Verification: is it even possible?

Goals

FASTER project addresses the above by:

- . Including reconfigurability as an explicit design concept in computing systems design, along with methods and tools that support run-time reconfiguration in the entire design methodology
- · Providing a framework for analysis, synthesis and verification of a reconfigurable system
- · Providing efficient and transparent runtime support for partial and dynamic reconfiguration, including micro-reconfiguration
- . Demonstrating usability and performance on commercial applications offered by the industrial partners

Technical approach

Novel tool-chain allowing to

- Define the application components categorized in
- Static HW part, reconfigurable HW modules, software part
- . Provide an analytical model of a reconfigurable design
 - By relating application attributes with possible implementation parameters
 - By estimating metrics (speed, area, power)
- Estimate, identify and optimize performance and constraints on the target reconfigurable system
 - Execution time
 - Floorplanning/placement
 - HW/SW execution
 - Reconfiguration time

Realized by identifying

- Partitioning of the input specification in HW/SW components
- Implementation(s) of the modules to be realized as HW accelerators
- Corresponding level of reconfigurability for HW components,
 i.e. none, region-based, micro
- Power constraints
- Floorplanning constraints (size and shape)
- . Placement requirements
- . A baseline schedule for application execution

BitFile **Application** (parallel specification: **FASTER Methodology** tasks, threads,... static Vendor Identification SW/HW **FPGA** HDL . /optimization partitioning Dynamic synth. & Mapping of RC & PR portions scheduling tools meta data HW Task Graph + Annotations SW + o o Run-time Requirements (perf., power, etc) Scheduler Graph Platform Description (depend encies) Compiler EXE CPU Run-time Parallel, Reconfigurable Scheduler Platform

Project Details

Contract number INFSO-ICT-287804

Coordinator

Dionisios Pnevmatikatos FORTH-ICS pnevmati@ics.forth.gr

Project website

http://www.fp7-faster.eu

Community contribution 2.8 M€

Start date

September 1st, 2011

Duration

36 months

Methodology overview

Base procedure

- System described in XML format
- Four independent XML parts are analyzed, generated and updated
- Starting point is a C-like representation of the application
- A corresponding task graph is derived where every task is treated as region-reconfigurable or micro-reconfigurable module

Demonstration and use

- Effectiveness of the FASTER tool-chain will be demonstrated on three (3) complex applications from different application domains and on commercial platforms (equipped with Xilinx Virtex-6 FPGAs):
 - Reverse Time Migration (RTM), a computational seismography application, by Maxeler Technologies
 - Global Illumination and Image Analysis, by ST Microelectronics
 - Netwok Intrusion Detection, by Synelixis
- . Evaluate the tool-chain on designer's productivity in the design and verification process
- Metrics: application speed, cost and power consumption

Expected results

- . 20% productivity improvement due to seamless implementation and verification of dynamically changing systems
- 50% total ownership cost reduction for Network Intrusion Detection (NID) and Reverse Time Migration (RTM)
- 2x performance improvement under power constraints for Global Illumination and Image Analysis