
Information and Communication Technologies (ICT) Programme

Project No: FP7-ICT-287804

D3.3: Hardware support for Efficient
Dynamic Reconfiguration

Author(s):Georgi Gaydadjiev (CHT), Tobias Becker (IMP),
Tim Todman (IMP)

Status -Version:Version 1.0

Date:28 August, 2013

Distribution - Confidentiality: Confidential

Code:FASTER_D3_3_IMP_FF_20130831

Abstract:

This document constitutes deliverable D3.3 Hardware support for efficient run-time verification,
the outcome of task T3.4, detailing the necessary support for efficient run-time verification. The
document shows ways to support low overhead (in terms of performance and area) run-time
verification, with adequate, light-weight hardware (architectural) support. In particular, the
document includes developed by IMP for in-circuit assertions and exceptions as well as statistical
in-circuit assertions, which allow low-overhead run-time verification.

 © Copyright by the FASTER Consortium

FP7-ICT-287804-FASTER
WP3-Synthesis and Verification

Disclaimer

This document may contain material that is copyright of certain FASTER beneficiaries, and
may not be reproduced or copied without permission. All FASTER consortium partners
have agreed to the full publication of this document. The commercial use of any information
contained in this document may require a license from the proprietor of that information.
The FASTER Consortium is the following:

Beneficiary
Number

Beneficiary name Beneficiary
short name

Country

1(coordinator) Foundation for Research and Technology –
Hellas

FOR Greece

2 Chalmers University of Technology CHT Sweden
3 Imperial College London IMP UK
4 Politecnico di Milano PDM Italy
5 Ghent University GNT Belgium
6 Maxeler MAX U.K.
7 ST STM Italy
8 Synelixis SYN Greece

The information in this document is provided “as is” and no guarantee or warranty is given
that the information is fit for any particular purpose. The user thereof uses the information at
its sole risk and liability.

Document Revision History

Date Issue Author/Editor/
Contributor

Summary of main changes

June 18, 2013 0.1 Georgi Gaydadjiev Initial table of contents
August 9, 2013 0.2 Tim Todman Contributions from IMP
August 28, 2013 0.3 Georgi Gaydadjiev First complete version
August 31, 2013 1.0 Tim Todman Final version after QC

FASTER D3 3 IMP FF-20130831 Page 2 of 18

FP7-ICT-287804-FASTER
WP3-Synthesis and Verification

Table of contents

1. Introduction . 4
1.1. Task objectives . 4
1.2. Document overview . 4

2. Technical overview . 5
2.1. Background . 5

3. In-circuit assertions and exceptions . 7
3.1. Abstract approach . 7
3.2. Implementation for Maxeler designs . 9
3.3. Evaluation . 12

4. In-circuit statistical assertions . 13
4.1. In-circuit statistical assertions . 13
4.2. Evaluation . 15

5. Conclusion . 17

FASTER D3 3 IMP FF-20130831 Page 3 of 18

FP7-ICT-287804-FASTER
WP3-Synthesis and Verification

1. Introduction

This document constitutes deliverable D3.3 Hardware support for efficient run-time verification,
the outcome of task T3.4, detailing the necessary support for efficient run-time verification.

1.1. Task objectives

This deliverable meets the second and third objectives of task 3.4: exploring techniques
for verifying selected static and dynamic aspects of a reconfigurable design at run-time, and
adequate, light-weight hardware (architectural) support for run-time verification.

Figure 1 shows how verification fits into the overall FASTER tool flow. We develop
low-overhead, portable designs for in-circuit assertions (including statistical assertions) and
exceptions which can be easily ported to multiple back-end flows. While our designs are
currently implemented for Maxeler systems, they can be easily ported to other platforms and
tool flows.

In particular, IMP has developed approaches for in-circuit assertions and exceptions, which
meet both task objectives:

• Firstly, run-time verification of static and dynamic aspects of a design can be achieved
by writing in-circuit assertions which, when true, indicate that the design is working
correctly. We show that our designs allow users to carry out run-time verification without
significant impact on speed, area or power consumption.

• Secondly, the in-circuit assertions also provide lightweight hardware support for run-time
verification; we later show that the overhead of these assertions is low. Whilst our
in-circuit assertions are implemented using reconfigurable fabric, future architectures
could harden statistical operators, allowing even lower overhead circuit monitoring. We
further show that assertions can be implemented in hardware or software, making the
hardware/software boundary more flexible, which can benefit some application scenarios.

1.2. Document overview

The rest of this document is organized as follows: Section 2 gives a technical overview of the
work, showing the approach used; Section 3 details our approach to in-circuit assertions and
exceptions; Section 4 shows our approach to in-circuit statistical assertions. Finally, Section 5
concludes and shows planned future work.

FASTER D3 3 IMP FF-20130831 Page 4 of 18

FP7-ICT-287804-FASTER
WP3-Synthesis and Verification

High-level analysis.
Contains rough/
fast estimation of
a)Power,
b)Resources,
c)Computation
time

Identification of
PR cores +
Application

profiling

HW/SW
partitioning

Optimization for
micro-

reconfiguration
(TLUT, TCON)

Baseline
scheduer +

Floorplanning

Verification

μPC
Param.
change

List of
HDL

functions
+

Parallelism
annotation

s
(openMP)

C
description

XML description
- App
- Platform
- HW/SW partitioning

Library w/ SW/HW I/
R modules

+

SW

Mapping tools
Mapping tools

WP2

What annotations
are needed on C or

on HDL?

Static

Micro-reconfig.

Module-based

Reference
design

WP3 (back-end)

Vendor-flow

Vendor-flow

+ relocation

UGENT + Vendor-flow

RTSM

T2.4

SW

Mapped
design

PLATFORM

CPU

WP4

Figure 1: How verification fits into the FASTER tool flow.

2. Technical overview

Our approach for run-time verification uses in-circuit assertions and exceptions. The user
takes the design specifications to derive design properties, which can be divided into static and
dynamic sets. Static properties do not not depend on run-time data, and can be verified using
the approach developed by IMP for verifying static and dynamic properties at compile-time,
detailed in FASTER project deliverable D3.2. By contrast, dynamic properties do depend on
run-time data, and can be verified using the approach detailed in this document.

Whilst our implementations use Maxeler design inputs, the approach is general and can
extend to other design inputs, such as the more traditional Verilog and VHDL languages.

We define an assertion as any run-time Boolean expression which, when false, indicates
an error of some kind, such as an input value out of range, or an intermediate result that
will cause overflow. An exception is part of the control or data path that runs only when a
corresponding assertion is false; if no assertions are false, no exception paths are active.

Assertions and exceptions separate error-handling code from normal operation, when no
errors have been detected. Other language constructs could be used, but separating normal
and error-handling code makes both easier to reason about. Assertions used in development
may be removed for deployment; some criticize this as like “a sailing enthusiast who wears his
lifejacket when training on dry land, but takes it off as soon as he goes to sea” [1].

2.1. Background

Software assertions and exceptions: assertions are part of the C standard and by default print
a message on the console before aborting. C has no built-in support for exceptions, but can
emulate them using calls to jump back to functions deeper in the stack. Some languages have
extensive support for exceptions, notably Ada and Eiffel [2].

FASTER D3 3 IMP FF-20130831 Page 5 of 18

FP7-ICT-287804-FASTER
WP3-Synthesis and Verification

Hardware exceptions: the IEEE754 standard for floating-point arithmetic [3] includes
exceptions, recommending that exceptions be resumeable, allowing user programs to fix
problems. Exception handling in pipelined or out-of-order processors is difficult because
exceptions from later instructions may occur before earlier instructions finish.

Hardware debugging: Debugging circuits can correct a design after deployment, whereas
exceptions are included from the beginning. Hung and Wilton [4] monitor signals in FPGA
(Field Programmable Gate Array) designs by reclaiming unused routing resources; conditions
causing errors can be observed but not corrected in-place.

Assertion-based verification lets designers add assertions to their designs, written in Boolean
and temporal logic [5]. Approaches include PSL [6] and SVA [7]. These approaches only apply
to simulation, not real hardware, and only to hardware parts of designs, not corresponding host
software. Assertion-based verification has been extended to in-circuit assertions by Curreri [8],
who extend ANSI-C assertions to streaming FPGA designs. This approach may catch some
bugs caused by mismatches between software and hardware. However, there is no exception
mechanism; user programs cannot recover from exceptions in hardware, only report errors
back to software.

Statistical assertions have been proposed by Dinh et al. [9], as a debug-time method
to reason about large parallel programs – users can reason with derived metrics, rather
than raw program output. The assertions are implemented efficiently using a map-reduce
style computation. We use statistical assertions for run-time monitoring of reconfigurable
hardware-accelerated systems.

Hardware redundancy: fault tolerance can be achieved using extra hardware, for example in
the work of Siozios et al. [10], where redundancy is selectively applied to areas of the hardware
most likely to experience faults. These approaches are orthogonal to our work.

FASTER D3 3 IMP FF-20130831 Page 6 of 18

FP7-ICT-287804-FASTER
WP3-Synthesis and Verification

3. In-circuit assertions and exceptions

This section shows techniques developed by IMP for run-time verification by in-circuit assertions
and exceptions.

3.1. Abstract approach

We now describe our abstract approach to runtime assertions and exceptions for streaming
hardware designs. The approach does not depend on any particular tool, but could adapt to
several available streaming hardware design tools.

We choose streaming hardware designs because they are increasingly used to implement
reconfigurable hardware designs, particularly for high-performance applications. Much of our
approach could also apply to other hardware design languages such as VHDL and Verilog.

Figure 2 shows our verification flow. The flow starts with a design to verify and the properties
to be verified. First, the user divides the properties into static or compile-time properties, and
dynamic or run-time properties, dependent on run-time data. Second, the user separates the
properties into assertions and exceptions; assertions encoding design properties, exceptions
labelling error conditions. Static properties can be handled by existing static verification
approaches. Third, the user writes run-time assertions to encode design assumptions which can
only be checked at run-time, for example input variable ranges. For some exceptions, the user
writes handlers to catch the exception and substitute a replacement value for the expression
causing the exception: for example, an overflow exception might result in the value being
clamped at the maximum value for that variable, resulting in a saturating arithmetic. Other
exceptions may have no sensible replacement value and are propagated to software, where
they can be used for debugging. Finally, the user runs the design including assertions and
exceptions. If no assertions are raised, and any exceptions are handled, the design is verified
as correct for the input and assertions used. Currently, the user manually separates the static
and dynamic properties and adds assertions and exceptions, but future work could automate
this, perhaps requiring the user to write the properties using a specification language, then
detecting which are dynamic, and compiling from specifications into assertion conditions.

When multiple designs implement the same specifications, for example straightforward and
optimized implementations, the same assertions and exceptions can be reused for both, to
check requirements are met. This way design efforts are reduced. Other assertions can be
added to each design to check design-specific properties.

Hardware exceptions differ from assertions in that they can be handled, meaning that
a value is substituted for the expression which raised the exception. This allows designs to
handle errors in place rather than relying on host software to fix the problem, potentially
reducing bus traffic between software and hardware hosts (the control and the accelerator
sub-systems). Users can explore a tradeoff: handling more errors in hardware, costing more
resources versus handling more errors in software, at a cost of more bandwidth require between
hardware and software hosts.

The grammar of our abstract stream language follows:

1d = . . .

FASTER D3 3 IMP FF-20130831 Page 7 of 18

FP7-ICT-287804-FASTER
WP3-Synthesis and Verification

Program specifications

Existing approaches

Runtime
dependent?

yes

Assertions, exceptions

Write
assertions and
exceptions

Combine

Checked design

Unhandled
exceptions?

Design

inputs outputs

exceptions

no

Success: design
verified OK

yes

Failure: design
not verified

no

Figure 2: Verification flow of our abstract approach.

2| ” except ion ” ID ” ; ”
3s = l v a l ”=” expr
4| ” i f ” ” (” e ”) ” s ” e l s e ” s
5| ”whi l e ” ” (” e ”) ” s
6| ” a s s e r t ” ” (” e ”) ”
7e = e bop e
8| INT
9| FLOAT
10| ID
11| ” (” e ”) ”
12| uop e
13| ” r a i s e ” ID
14| ” try ” e ”with” (ID ”−>” e)∗
15bop = ”+” | ”−” | ”∗” | ”/” | . . .
16uop = ”+” | ”−” | ”˜” | . . .

where d, s and e are declarations, statements and expressions respectively. Extensions for
assertions and exceptions comprise: 1. a declaration to define possible exceptions in this
program; only declared exceptions can be used; 2. a statement to assert a condition: if false,
an exception is raised; 3. an expression to raise an exception; 4. an expression to allow raised
exceptions to be handled. Given an expression e, its result is e if no exceptions are raised in e,

FASTER D3 3 IMP FF-20130831 Page 8 of 18

FP7-ICT-287804-FASTER
WP3-Synthesis and Verification

otherwise the optional list of exception handlers is consulted. If a handler matches the raised
expression, the corresponding value is the result of the expression, otherwise the exception
propagates to the surrounding program.

The assert statement is directly taken from C99; many designers will already be familiar
with this. Since C has no support for exceptions, we base our design on OCaml, which allows
exceptions to be declared, raised and handled within both expressions and statements.

An informal semantics of our assertions and exceptions is:

1. a failed assertion is recorded in a buffer showing which assertion failed, on which cycle;

2. raising an undeclared exception is a compile-time error;

3. raising an exception propagates it out to the enclosing expression;

4. an exception raised within a try expression is matched against the list of handlers;
if a handler matches, the corresponding expression results, otherwise the exception
propagates to the surrounding expression;

5. if an exception propagates to a statement, it is unhandled and recorded like a failed
assertion.

3.2. Implementation for Maxeler designs

We implement our abstract approach for Maxeler streaming systems. In the Maxeler system,
users describe hardware designs as Java programs, using a Java class library and language
extensions. Prior to execution, the compiler builds a dataflow graph of the program, translates
the graph into an HDL (Hardware Description Language) implementation, and calls FPGA
vendor tools to compile the HDL into a bitstream. The design consists of a data path reading
from one or more stream inputs, one element per stream per cycle, and producing one or more
stream outputs (one element per cycle). State machines or counters control the design.

We systematically translate designs using Maxeler kernels extended with the proposed
assertions and exceptions into regular Maxeler designs. Currently our translation is manual,
but future work could automate it.

Extensions for runtime assertions and exceptions: we extend the Maxeler kernel description
language, based on Java, with the our abstract language features for runtime assertions and
exceptions. We extend the grammar as follows:

1d = . . .
2| ” ex c ep t i on ” ID ” ; ”
3s = . . .
4| ” t r y ” s (” c a t ch ” ” (” ID ”) ” s)∗
5| ” a s s e r t ” ” (” e ”) ”
6| ” r a i s e ” e ” ; ”
7e = . . .
8| ” t r y ” e (” when” ID ”−>” e)∗
9| ” r a i s e ” e

FASTER D3 3 IMP FF-20130831 Page 9 of 18

FP7-ICT-287804-FASTER
WP3-Synthesis and Verification

MaxJ kernel
with exceptions
and assertions

Generated
Host code,

Calling
Maxeler API

Standard
MaxJ kernel

Host
executable

FPGA
configuration

Host code,
calling

extended API

Pre-
processor

inputs outputs

inputs outputs

Assertions,
exceptions

KEY:
Tool

File

Maxeler,
FPGA
vendor tools

C compiler

Figure 3: Design flow targeting Maxeler designs.

where existing grammar for declarations (d), statements (s), and expressions (e) is represented
by ellipses (. . .). We allow exceptions to be raised and handled in both statements and
expressions; this gives designers additional freedom about where to put error-handling code:
one __try ... __catch block can handle any exceptions raised in the entire block.

Figure 3 shows the design flow for Maxeler systems. The user writes their design as a
software program using our extended version of Maxeler’s API (Application Programming
Interface) for controlling a hardware design written in our extended version of Maxeler’s MaxJ
kernel description language. Our API extensions allow (a) assertions in hardware designs to be
reflected into software designs; (b) exceptions to be declared, raised and handled in hardware
designs. Unhandled exceptions similarly reflect into software.

Figure 4 shows how exceptions are supported by wrapping Maxeler hardware and software
APIs. Each exception which can escape from the hardware becomes another streaming output,
which must be passed using standard Maxeler APIs. In software, our tool adds a loop which
performs a C software assertion for each exception output added.

Case study: the following shows a basic C implementation of a 32-bit integer moving
average filter, which we use as a basis for our experiments. The design is parametrised for
stream length N and filter radius W ; we use arbitrary stream lengths and radius W = 64.
This code reads from input array inp and writes to output array outp.

1const s i z e t N=16∗1024∗1024;
2int inp [N] , outp [N] ;
3for (i =0; i<N;++ i) {
4sum=0;
5for (j =0; j<W;++j) {
6sum += inp [i−W/2+ j] ;
7}
8outp [i] = sum/W;
9}

For space reasons we omit the code that prevents reading outside the input array. A
Maxeler implementation is:

1ex c ep t i on OutOfRange ; // dec l a r e excep t i on

FASTER D3 3 IMP FF-20130831 Page 10 of 18

FP7-ICT-287804-FASTER
WP3-Synthesis and Verification

Maxeler hardware API

HW API wrapper

inputs

inputs

inputs

outputs

outputs

outputs

outputs

outputs exceptions

exceptions

Software

Hardware

Maxeler software API

User SW host program

SW API wrapper

User HW kernel

Figure 4: Wrapping Maxeler hardware and software APIs.

2HWVar inp = io . input (” inp ” , hwInt (W)) ;
3t r y {
4HWVar sum = constant . var (0) ;
5for (j =0; j<W;++j) {
6sum += stream . o f f s e t (inp ,−(W/2)+ j) ;
7i f (sum<0) throw OutOfRange ;
8}
9ca t ch (OutOfRange) {
10sum = MAX;
11}
12}
13i o . output (”outp” ,sum/W, hwInt (W)) ;

where: line 1 declares an exception; line 2 declares a stream input inp of 32-bit, unsigned
integer type; lines 3 to 8 comprise a runtime exception-handling block: an OutOfRange
exception raised in this block is handled by the corresponding catch block; line 4 declares a
variable sum to store intermediate results; lines 5 to 8 implement the filter; this loop runs at
compile-time (a fully-unrolled implementation); line 8 raises the OutOfRange exception if sum
is negative (indicating overflow); lines 9 to 11 handle the exception from lines 4 to 8: if caught,
sum is set to MAX; finally, line 12 declares output stream outp.

We augment Maxeler API calls interacting with the hardware to read back assertions
and exception outputs, and generate one C assertion for each failed hardware assertion or
unhandled exception. While C does not support exceptions, our approach could adapt to
languages which do, so unhandled hardware exceptions lead to software exceptions.

FASTER D3 3 IMP FF-20130831 Page 11 of 18

FP7-ICT-287804-FASTER
WP3-Synthesis and Verification

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 0 10 20 30 40 50 60 70

R
e

s
o

u
rc

e
s

Exceptions

%LUTs
%FFs

%BRAMs

Figure 5: Area results: % area versus no. exceptions for a 64-wide, 32-bit moving average
filter.

3.3. Evaluation

We evaluate using a moving average filter as a case study; though simple, similar tradeoffs
in terms of area versus speed, and number of exceptions and assertions are needed in larger
designs. Experiments measure the cost (reconfigurable hardware resources) to add assertions.

Experimental setup: hardware is compiled using Maxeler MaxCompiler version 2012.1 and
Xilinx ISE 13.1, targeting the Maxeler MAX3 board (Xilinx Virtex-6 xc6vsx475t device). Each
design targets a clock rate of 300MHz.

Area results: to measure assertion costs, we add an assertion to the loop that variable
sum is always positive (a negative number indicates overflow). We add A assertions, where
1 < A < W by inserting the line: if (j<N) assert(sum>0); after the accumulation in the
loop body.

Figure 5 shows area resources used (LUTs and Flip Flops) versus number of exceptions for
the moving average application The cost of adding assertions lies between 4.5% (LUTs) and
1.5% (BRAMs) due to the logic used to implement assertion conditions, and buffers used to
store assertion results. Beyond that, there is a linear area cost per assertion added; since each
exception is a Boolean stream output, adding an exception has a small area penalty. Designers
may thus add many exceptions without much concern over area costs.

FASTER D3 3 IMP FF-20130831 Page 12 of 18

FP7-ICT-287804-FASTER
WP3-Synthesis and Verification

4. In-circuit statistical assertions

This section shows techniques developed by IMP for run-time verification by in-circuit statistical
assertions. This expands the work of the previous section by allowing assertion conditions to
use the statistics of in-circuit signals, rather than simple Boolean conditions.

4.1. In-circuit statistical assertions

Our assertion language comprises C-language style Boolean operators, augmented by statistical
primitives. We choose the C language as it is familiar to many designers. The set of statistical
primitives is as follows:

• mean(e1), the mean value of expression e1;

• stdev(e1), the standard deviation of expression e1;

• variance(e1), the variance of expression e1.

We choose these as a useful set for expressing statistical conditions; future work could add
further statistical operators such as covariance, skewness and kurtosis, or limit the number of
cycles over which the statistics are calculated, potentially reducing hardware resources.

The following shows the grammar of our statistical assertions language in extended Backus-
Naur form [11]:

1e = a
2| e bop e
3| uop e
4| ”mean” ” (” e ”) ”
5| ” stdev ” ” (” e ”) ”
6| ” var iance ” ” (” e ”) ”
7bop = ”==” | ”!=” | ”<” | ”>” | . . .
8uop = ”+” | ”−” | ” ! ” | ”˜”

where bop represents any C binary operator, uop any C unary operator and a any atomic
expression (literals, variables, constants). This language allows the user to combine both
Boolean and statistical operators.

Online algorithms for calculation of statistical metrics such as mean, variance and standard
deviation are known [12] [13], which involve a single pass over the input data, using an
accumulator and the current input element. Whilst this may seem suitable for streaming
implementations, they contain feedback owing to the accumulator. Chan et al. developed a
pairwise algorithm for variance [14] which can be parallelized; for N input elements, naively
implementing this algorithm on streaming systems requires NlogN hardware. Chan et al’s
algorithm denotes the sum and mean of data points xi as Tij and Mij respectively:

Tij =

j∑
k=i

xk Mij =
1

j − i + 1
Tij

FASTER D3 3 IMP FF-20130831 Page 13 of 18

FP7-ICT-287804-FASTER
WP3-Synthesis and Verification

-1

S -2

S -4

S -8

S

KEY:

S
Pairwise
operator

Stream
offset-16

x
n

x
n-1

S
n-1,n

S
n-3,n-2

S
n-3,n

S
n-7,n-4

S
n-7,n

S
n-15,n-8

S
n-15,n

-16

S

S
n-31,n-16

S
n-31,n

Figure 6: Systolic partial calculation of variance of input xn using pairwise operators.

and the sum of squares Sij:

Sij =

j∑
k=i

(xk −Mij)
2

calculated by their pairwise algorithm (here i = 1 and j = 2m):

S1,2m = S1,m + Sm+1,2m +
1

2m
(T1,m − Tm+1,2m)2

We propose two designs suitable for streaming systems: a systolic design adapted from
Chan’s parallel algorithm, and a C-slowed variant of the online algorithm. Figure 2 shows the
datapath for the systolic design, combining stream offsets with Chan’s pairwise operators for
calculating variance or mean; for clarity, we omit the calculation of Ti,j, which has the same
pattern. Note that the leftmost operator can be optimized, because Si,i = 0 (the variance of
a single point is zero). The systolic design uses the observation that in a streaming system,
iterating through the input data in order, sums of neighbouring elements can be accessed by
stream offsets, so using Chan et al’s notation:

T1,2k = T1,2k−1 + T2k−1+1,2k

= T1,2k−1 + offset(T1,2k−1 ,−2k)

FASTER D3 3 IMP FF-20130831 Page 14 of 18

FP7-ICT-287804-FASTER
WP3-Synthesis and Verification

and S1,2k is calculated in the same way.

Note that this only calculates part of the variance, specifically the local variance around
each sample; however, it greatly reduces the amount of data sent back to software. The design
consists of repeating units of the pairwise operator and stream offsets to delay the input. Each
repeating unit reduces both the output data and the remaining calculations to be done in
software by half, so K units reduces it 2K-fold.

Implementation targeting Maxeler streaming designs: we choose Maxeler streaming systems
to implement our designs, though the approach is not Maxeler-specific, and can be ported
to other design descriptions such as Verilog and VHDL. We focus on a systematic approach
to translating assertions into Maxeler designs; future work could implement a compiler from
Maxeler designs extended with statistical assertions into the base language.

The Maxeler system generates streaming designs, where inputs and outputs are large arrays
used as streams. Each output element is calculated from corresponding elements in one or
more input streams; offsets allow reading from neighbourhood stream elements. The user
programatically builds a datapath using a domain-specific language based on Java. The control
path may be counters or state machines generated from another domain-specific language.

Maxeler tools compile designs into hardware description languages and control FPGA
vendor tools to build a reconfigurable device bitstream implementing a design. Software can
interact with the generated hardware using a Maxeler application programming interface to
configure the FPGA device with the bitstream and run on user data stored in C arrays. The
Maxeler tools automatically pipeline the datapath, resulting in deeply-pipelined operators at a
high clock rate. This works well for feed-forward designs, but feedback requires some manual
intervention and reordering or replicating of input data.

4.2. Evaluation

We evaluate our implementations of on-chip statistical assertions showing the tradeoff between
hardware and software implementations. We compare:

1. scalability: operator size versus hardware size;

2. software statistics versus hardware-assisted: speed, bandwidth.

Experimental setup: we implement our designs using Maxeler compiler version 2012.1 and
Xilinx ISE 13.1. Designs target a MAX3 system, containing a Xilinx xc6vsx475t FPGA, with
a speed goal of 200MHz. We implement a single variance assertion, with 32-bit input data in
IEEE Single-Precision (SP) floating-point format, one data element per cycle.

Figure 7 shows the effect of unroll factor on the area resources for the systolic variance
operator; the area is measured in Look-Up Tables (LUTs), Flip-Flops (FFs), Digital Signal
Processing (DSP) and Block RAM (BRAM) blocks. The area cost is linearly proportional
to the unroll factor (for LUTs, FFs and DSPs), but the output data reduction factor is
exponential: increasing the unroll factor by one halves the output volume. For unroll factor 15,
the data reduces by 215 and the variance takes about 5% of flip-flops, 8% of other resources. For
BRAMs, the cost is proportional to the number of elements summarized in the variance. There

FASTER D3 3 IMP FF-20130831 Page 15 of 18

FP7-ICT-287804-FASTER
WP3-Synthesis and Verification

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 0 2 4 6 8 10 12 14

N
u
m

b
e
r

Unroll factor

LUTs
FFs

BRAMs * 100
DSPs * 100

Output reduction factor

Figure 7: Area usage and output reduction versus unroll factor for systolic variance operator.

is a small anomaly in circuit area for unroll factor 11 which we believe is due to pseudorandom
variance in the Xilinx place and route tools.

The C-slowed design uses a small fixed area per assertion (about 3.5% of LUTs, 2% of
FFs for 32-bit SP variance). For 32-bit SP data, the pipeline is 85 stages long, padded to 128
stages. The data are reduced to 128 partial variances, which can be further reduced to a single
variance by Chan et al’s method. Note that the C-slowed design is smaller than the unrolled
systolic designs, and can run at up to 300MHz.

Case study: time limit: we assume a hard 0.5s limit for hardware run time. Figure 8 shows
estimated run times versus number of statistical assertions for both software and hardware
implementations. We assume the design is limited by the bandwidth between software and
hardware (MAX3 has 2GB/s maximum speed for the host-FPGA connection across the PCIe
bus); stream length is 226, each output is 4 bytes wide, so without any assertions, the runtime
is given by the time to transfer 226 elements across the bus: 226 × 4/(2× 109) = 0.134 seconds.

Software calculations are limited to two assertions within the time limit, because all 226

values must be streamed across the bus for each exception. In contrast, the C-slowed design
summarizes 226 data to 128 values, meaning the time cost of each exception is much lower.
Systolic hardware designs allow the number of assertions to be traded for hardware area. Note
we do not include time to complete the variance calculation on the host, but this is very small
(only 128 inputs instead of 226).

FASTER D3 3 IMP FF-20130831 Page 16 of 18

FP7-ICT-287804-FASTER
WP3-Synthesis and Verification

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 0 2 4 6 8 10

R
u
n
ti
m

e
 /
 s

Number of variance assertions

software variance
C-slowed hardware variance

real-time limit
Systolic hardware variance, 1 unit

Systolic hardware variance, 2 units

Figure 8: Estimated time taken by software and C-slowed hardware variance assertions versus
number of assertions.

5. Conclusion

We present an abstract approach for adding in-circuit assertions and exceptions to hardware
designs, and a concrete implementation for Maxeler systems. Results show that our assertions
and exceptions add little area and execution latency costs.

To allow efficient monitoring for self-adaptive systems, we design and implement in-circuit
statistical assertions, allowing designs to use several frequently-occurring statistical operators to
express desired runtime properties of design inputs, outputs and internal signals. Results show
that response time can be greatly reduced at a modest cost in hardware area per exception.

Current and future work includes, firstly, integrating our approach with temporal logic,
allowing a more formal basis for the error handling. Secondly, we would like to add support for
run-time reconfiguration. Designs could reconfigure to add exception handlers if many errors
are detected, or running circuits could dynamically change exception handlers and assertions,
without changing the rest of the design.

Thirdly, we would like to enlarge the set of statistical primitives to allow more general
assertions on the state of the design. We would also like to explore the interaction of the
statistical operators with run-time reconfiguration. Statistical conditions can be used to decide
when to reconfigure. More generally, the statistics operators themselves can be reconfigured,
allowing the system to alter the balance of configurable hardware between assertions and
computation depending on runtime conditions.

FASTER D3 3 IMP FF-20130831 Page 17 of 18

FP7-ICT-287804-FASTER
WP3-Synthesis and Verification

References

[1] C. A. R. Hoare, “Hints on programming language design.,” Tech. Rep. STAN-CS-73-403,
Stanford, CA, USA, 1973.

[2] M. Scott, Programming Language Pragmatics. Morgan Kaufman, 3 ed., 2009.

[3] “IEEE standard for floating-point arithmetic,” IEEE Std 754-2008, pp. 1–58, 2008.

[4] E. Hung and S. J. E. Wilton, “Towards simulator-like observability for fpgas: a virtual
overlay network for trace-buffers,” in FPGA ’13, 2013.

[5] S. Vasudevan, “What is assertion-based verification?,” SIGDA E-News, vol. 42, December
2012.

[6] “IEEE standard for property specification language (PSL),” IEEE Std 1850-2010 (Revision
of IEEE Std 1850-2005), pp. 1–182, 2010.

[7] D. Bustan, D. Korchemny, E. Seligman, and J. Yang, “Systemverilog assertions: Past,
present, and future sva standardization experience,” Design Test of Computers, IEEE,
vol. 29, no. 2, pp. 23–31, 2012.

[8] J. Curreri, G. Stitt, and A. D. George, “High-level synthesis of in-circuit assertions for
verification, debugging, and timing analysis,” International Journal of Reconfigurable
Computing, vol. 2011, 2011.

[9] M. N. Dinh, D. Abramson, J. Chao, D. Kurniawan, A. Gontarek, B. Moench, and L. DeR-
ose, “Debugging scientific applications with statistical assertions,” Procedia Computer
Science, vol. 9, no. 0, pp. 1940 – 1949, 2012. Proceedings of the International Conference
on Computational Science, (ICCS) 2012.

[10] K. Siozios, D. Soudris, and D. Pnevmatikatos, “A framework for enabling fault tolerance
in reconfigurable architectures,” in Reconfigurable Computing: Architectures, Tools and
Applications (P. Sirisuk, F. Morgan, T. El-Ghazawi, and H. Amano, eds.), vol. 5992 of
Lecture Notes in Computer Science, pp. 257–268, Springer Berlin Heidelberg, 2010.

[11] N. Wirth, “What can we do about the unnecessary diversity of notation for syntactic
definitions?,” Commun. ACM, vol. 20, pp. 822–823, Nov. 1977.

[12] D. E. Knuth, The Art of Computer Programming, volume 2: Seminumerical Algorithms.
Addison-Wesley, 3rd ed., 1998.

[13] B. P. Welford, “Note on a method for calculating corrected sums of squares and products,”
Technometrics, vol. 4, no. 3, pp. pp. 419–420, 1962.

[14] T. F. Chan, G. H. Golub, and R. J. LeVeque, “Updating formulae and a pairwise algorithm
for computing sample variances,” Tech. Rep. STAN-CS-79-773, Department of Computer
Science, School of Humanities and Sciences, Stanford University, November 1979.

FASTER D3 3 IMP FF-20130831 Page 18 of 18

	Introduction
	Task objectives
	Document overview

	Technical overview
	Background

	In-circuit assertions and exceptions
	Abstract approach
	Implementation for Maxeler designs
	Evaluation

	In-circuit statistical assertions
	In-circuit statistical assertions
	Evaluation

	Conclusion

