
Information and Communication Technologies (ICT) Programme

Project N
o
: FP7-ICT-287804

D1.1: Requirements of FASTER Applications
WP1: Requirements and Evaluation Criteria

Author(s): Mathieu Robart (ST)

Oliver Pell (Maxeler)

Yannis Papaefstathiou (Synelixis)

Andreas Brokalakis (Synelixis)

Status -Version: Version 1.0 (Final)

Date: February 28, 2012

Distribution - Confidentiality: Public

Code: FASTER_D1_1_STM_FF-20120228

Abstract:

This document reviews the various requirements of the test applications provided by the three

industrial beneficiaries. These applications cover different targeted application domains, from

high-performance computing (HPC), rendering, to embedded computations and image processing.

 Copyright by the FASTERConsortium

FP7-ICT-287804- FASTER

WP1 – Requirements and Evaluation Criteria

FASTER_D1_1_STM_FF-20120228 Page 2 of 26

Disclaimer

This document may contain material that is copyright of certain FASTER beneficiaries, and may

not be reproduced or copied without permission. All FASTER consortium partners have agreed to

the full publication of this document. The commercial use of any information contained in this

document may require a license from the proprietor of that information.

The FASTER Consortium is the following:

Beneficiary

Number
Beneficiary name

Beneficiary

short name
Country

1(coordinator)
Foundation for Research and Technology –

Hellas
FOR Greece

2 Chalmers University of Technology CHT Sweden

3 Imperial College London IMP UK

4 Politecnico di Milano PDM Italy

5 Ghent University GNT Belgium

6 Maxeler MAX U.K.

7 ST STM Italy

8 Synelixis SYN Greece

The information in this document is provided “as is” and no guarantee or warranty is given that

the information is fit for any particular purpose. The user thereof uses the information at its sole

risk and liability.

Document Revision History

Date Issue Author/Editor/Contributor Summary of main

changes

December 12, 2011 0.1 Mathieu Robart Initial draft

January 30, 2012 0.2 Andreas Brokalakis Synelixis NIDS application

January 31, 2012 0.3 Mathieu Robart ST contribution integration

February 1, 2012 0.4 Mathieu Robart Maxeler contribution

integration

February 9, 2012 0.5 Mathieu Robart Restructuration following

Milan meeting

February 16, 2012 0.6 Mathieu Robart Final draft

February 17, 2012 0.7 Mathieu Robart

February 28, 2012 1.0 Mathieu Robart Final version

FP7-ICT-287804- FASTER

WP1 – Requirements and Evaluation Criteria

FASTER_D1_1_STM_FF-20120228 Page 3 of 26

Table of contents

Disclaimer ... 2

Document Revision History .. 2

Table of contents ... 3

1. Introduction... 4

2. HPC (High Performance Computing) domain .. 5

2.1. Domain scope & requirements ... 5

2.2. Sample application: Reverse Time Migration (RTM) .. 6

3. Desktop-class domain .. 11

3.1. Domain scope & requirements ... 11

3.2. Sample application: Ray Tracing ... 11

4. Embedded domain .. 17

4.1. Domain scope & requirements ... 17

4.2. Sample application: Network Security and Intrusion Detection 19

4.3. Sample application: Image Analysis ... 22

5. Conclusion ... 26

FP7-ICT-287804- FASTER

WP1 – Requirements and Evaluation Criteria

FASTER_D1_1_STM_FF-20120228 Page 4 of 26

1. Introduction
(CONTRIBUTORS: ALL)

This document reviews the domains of application covered by the FASTER project, along with

the various requirements of test applications corresponding to these domains and provided by the

three industrial beneficiaries. These applications cover different targeted application fields, from

high-performance computing (HPC), workstation-class processing such as rendering, to embedded

computations and image processing.

FP7-ICT-287804- FASTER

WP1 – Requirements and Evaluation Criteria

FASTER_D1_1_STM_FF-20120228 Page 5 of 26

2. HPC (High Performance Computing) domain

2.1. Domain scope & requirements

HPC (High Performance Computing) addresses highly complex computational problems, due to

the large amounts of data to process and/or the complexity of the involved calculation. Such tasks

are typically performed on supercomputing-class systems or clusters, or on optimized parallel
architectures when suitable.

Key characteristics of HPC problems are:

 Large scale - an HPC system will typically consist of many compute nodes (ranging from

dozens to tens of thousands).

 Long runtimes - jobs will run for hours up to months at a time

 High computational requirements - in aggregate, arithmetic or other processing

requirements are much higher than in desktop applications. However, these can be

delivered either by a number of very powerful compute nodes or by a larger number of less

powerful compute nodes.

 High memory requirements - many HPC problems utilize large volumes of data in

memory, which can be located in each node or spread across many compute nodes. Within

each node, the computations generally require very high bandwidth to memory.

 Limited user interactivity - due to the long running nature of most HPC applications, even

on the largest supercomputers, user interaction is normally relatively limited, for example

setting up a job and then awaiting its completion.

 Fast interconnect - HPC systems often have faster inter-node interconnects compared to

standard computer servers or desktop systems. This is required to satisfy inter-node

communication during compute jobs execution. At the same time many HPC jobs may be

at least to some degree embarrassingly parallel and require minimal inter-node bandwidth.

Because of the large scale of HPC systems, some concerns that are only peripherally important in

desktops become much more significant:

 Physical size - since there will be many compute nodes in an HPC system, each node

should be as small as possible to minimize the size of the overall system. Space usage has

an impact on build and running costs, both directly (e.g. rent) but also less directly (e.g.

increased maintenance personnel required, longer/more complex cabling).

 Power consumption - large-scale HPC installations already consume many megawatts, and

power consumption is a first-order design constraint. Even for smaller scale HPC systems

(a few dozen nodes) there is typically a limit on the power available.

 Reliability and fault tolerance - while the failure of an individual node may be relatively

rare, with many nodes the probability that one will fail is dramatically increased and with

long execution times there is a risk that complete jobs may never run to completion

without encountering an error. Nodes themselves must be as reliable as practical and the

HPC system itself must tolerate failures, for example by supporting checkpointing and

restarting of jobs.

FP7-ICT-287804- FASTER

WP1 – Requirements and Evaluation Criteria

FASTER_D1_1_STM_FF-20120228 Page 6 of 26

2.2. Sample application: Reverse Time Migration (RTM)

(CONTRIBUTORS: MAXELER)

2.2.1. Application description

Some of the most computationally intensive geoscience algorithms involve simulating wave

propagation through the earth. The objective is typically to create an image of the subsurface from

acoustic measurements performed at the surface. To create an image of the subsurface, a low

frequency acoustic source on the surface is activated and the reflected sound waves are recorded

by (typically) tens of thousands of receivers. We term this process a “shot”, and it is repeated

many thousands of times while the source and/or receivers are moved to illuminate different areas

of the subsurface. The resulting dataset is dozens or hundreds of terabytes in size. The problem of

transforming this dataset into an image is computationally intensive and can be solved with a

variety of techniques. Reverse Time Migration (RTM) is a high end technique for generating
images of the earth and is used in complex geologies to give detailed subsurface images.

The concept behind RTM is relatively simple. We start with a known earth model. This earth

model might be simply acoustic velocity, but could also be anisotropic, elastic, or even visco-

elastic. Scientists conduct two modeling experiments simultaneously through the earth model.

Both attempt to simulate the seismic experiment conducted in the field—one from the source’s

perspective and one from the receivers’ perspective. The source experiment involves injecting our

estimated source wavelet into the earth and propagating it from t=0 to our maximum recording

time tmax, creating a 4D source field s(x, y, z, t). Typical values for x,y,z,t are ~1000-10000. At

the same time, we conduct the receiver experiment. We inject and propagate our recorded data

starting from tmax to t0, creating a similar 4D volume g(x, y, z, t). We have a reflection where the

energy propagated from the source and receiver is located at the same position at the same time,

thus an image can be obtained by summing the correlation of the source and receiver wavefield at
every time point and every shot, i.e.:

 () ∑ ∑ () ()

We frequently wish to collect subsurface offset gathers, cross-correlating source and receiver
wavefields by various shifts:

 () ∑ ∑ () ()

h is typically a few dozen, and it is this subsurface offset gather calculation which provides a

compelling use-case for partial reconfiguration since it is a significantly different calculation

compared to the wave propagation processing. This can be seen in the pseudo-code for the

Maxeler RTM shown in Figure 1.

FP7-ICT-287804- FASTER

WP1 – Requirements and Evaluation Criteria

FASTER_D1_1_STM_FF-20120228 Page 7 of 26

The first step of the computation is to simulate the propagation of the source wave to tmax, then

the computation is reversed and the source and receiver wavefields are propagated together from

tmax to t0. This method involves 50% more computational effort than a naive direct

implementation but is necessary to avoid the storage of large 4D state fields (which have sizes of

many terabytes). There are two major computation kernels: propagate and image, which are

fundamentally different. With sufficiently low-overhead dynamic (partial) reconfiguration, RTM

could benefit substantially from time-division multiplexing of the FPGA resources between the
propagate and image computations.

Figure 1 - Pseudo-code for RTM

2.2.2. Requirements

2.2.2.1 Computation Complexity

RTM is computationally very intensive - O(nshots ntimesteps nx ny nz) - however it has a

regular computational structure. Both the image and propagate kernels apply fundamentally the

same calculation to every point in the 3D problem domain, though there are some additional
calculations needed at the boundaries.

2.2.2.2 Type of Processing

The main arithmetic operations for RTM are multiplications and additions, however the

computation also puts significant pressure on the memory system both in terms of capacity and

bandwidth. For nx=ny=nz=1000 and 50 subsurface offsets, the total memory required is over

migrate_shot(shot_id) {

 src_curr = zeros(nx,ny,nz); src_prev = zeros(nx,ny,nz);

 rcv_curr = zeros(nx,ny,nz); rcv_prev = zeros(nx,ny,nz);

 image = zeros(nx,ny,nz,nh);

 model = load_earthmodel(shot_id);

 for t = 0 .. tmax {

 add_stimulus(shot_id, t, src_curr);

 propagate(src_curr, src_prev, model);

 }

 swap(curr_src, prev_src); // reverse time direction

 for t = tmax .. 0 {

 propagate(src_curr, src_prev, model);

 add_receiver_data(shot_id, t, rcv_prev)

 propagate(rcv_curr, rcv_prev, model);

 if (i % image_step == 0) // typically every 5-10 steps

 image(src_curr, rcv_curr, image);

 }

}

FP7-ICT-287804- FASTER

WP1 – Requirements and Evaluation Criteria

FASTER_D1_1_STM_FF-20120228 Page 8 of 26

200GB, while this data must be quickly read in/written out of the chip. The performance of most
RTM implementations is memory-bandwidth limited.

2.2.2.3 Control Flow

Control for the RTM application is essentially the loop structures detailed in Figure 1. In a FPGA

accelerated implementation these control structures remain on the CPU as software loops. The

FPGA executes the iteration loop over nx, ny, nz and manages the control associated with applying

differing operations at different points in the domain. In hardware this consists of counters

keeping track of position, and comparators evaluating that position against special case conditions

(e.g. boundaries).

The control flow of the application depends entirely on input parameters and is independent of the
results of the computation, so can be completely predicted in advance.

2.2.2.4 Data Flow

The propagate or image kernels can be implemented as a streaming datapath with a feed-forward

pipeline. There is no feedback of values within a single timestep.

2.2.2.5 Parallelism

There are several potential methods to parallelize RTM:

 Shots - Each shot represents typically many hours of computation and can be computed

independently from any other shot, with the final images summed.

 Domain blocks - a single 3D domain for a single shot can be split into multiple domain

blocks which can be processed by multiple processing chips. Each domain block must

communicate boundary regions with the adjacent blocks.

 Spatial points - multiple adjacent spatial output points can be computed in parallel. These

points share almost all of their input data.

 Pipelining - a highly optimized RTM datapath typically consists of many levels of

pipelining which can be efficiently employed because of the lack of feedback loops.

Ideally we opt to parallelize shots over multiple nodes in a cluster, domain blocks over multiple

processing chips within a single compute node (e.g. 4 FPGAs in a Maxeler MaxNode) and spatial
points within a chip.

2.2.2.6 Memory Constraints

RTM is a memory-intensive algorithm. Two key features determine the memory consumption.

The first is the physics model employed. For Maxeler's RTM we use an acoustic isotropic model

of the earth, which is described by one earth model parameter volume (velocity) and requires us to
store two pressure states for each wavefield. This totals 5 volumes.

The image volume containing the computed subsurface offset images, is 4D with a size

determined by the number of subsurface offsets being collected.

In CPU implementations, the data volumes are stored using 4-byte single precision floating point.

In FPGA accelerated implementations we can compress the model volumes to 2-bytes per point.

Figure 2 shows the memory required for RTM.

FP7-ICT-287804- FASTER

WP1 – Requirements and Evaluation Criteria

FASTER_D1_1_STM_FF-20120228 Page 9 of 26

nh Total memory

required (CPU)

Total memory

required (FPGA)

1 24GB 12GB

10 60GB 30GB

25 120GB 60GB

50 220GB 110GB

Figure 2- Table showing memory required for RTM with nx=ny=nz=1000 and varying

numbers of subsurface offsets (nh)

This memory contains the state of the calculation and must be maintained while the shot is

computed. This means that any reconfiguration of the chip during computation must preserve the
memory contents.

2.2.2.7 Targeted Performances

RTM is a performance-sensitive HPC application, however there are no real-time constraints. It is

advantageous to be able to compute a result as quickly as possible. In real use, a timeframe of

approximately 2 weeks to compute a full RTM is typical using conventional processors. An

accelerated implementation should be at least 10x faster to be considered as an attractive

alternative. Individual processing timesteps should take of the order of hundreds of milliseconds to

a few seconds. If the FPGA is to be reconfigured to execute the image calculation, it should

therefore be able to do so twice every image_step timesteps without significant performance

penalty (i.e. of the order of once every second).

2.2.2.8 Reconfigurability

The characteristics of individual RTM runs depend heavily on the configuration. Some parameters

commonly change every timestep or few timesteps:

 Type of computation (imaging or propagation): Every few timesteps the image calculation

is applied, which is a different calculation compared to the propagate calculation.

 Stimulus data injection: Some values may be written into the domain (for example an

initial stimulus wavelet, or receiver data recorded during a survey). The data values and

position those values should be written to could change.

 Receiver data readback: Values may be read out of the domain to the CPU during a

timestep. The position that these values should be read from may change.

Parameters that could change for every shot:

 Domain size (nx, ny, nz) and number of timesteps (nt): This effects both memory use on

the node (O(nxnynz)) and computational cost per node (O(nxnynznt)).

 Number of subsurface offsets (nh): This effects memory required to hold the offset image

volumes and the amount of computation required to compute them.

Other parameters which change less frequently are:

 Physics model: this fundamentally changes the nature of the computation and the amount

of storage.

 Size of convolution stencil operator: this can offer more or less accuracy at varying

computational costs.

Parameters that change rarely (e.g. physics model) are probably most suited to full reconfiguration

since there is little impact of doing so. Parameters that change more frequently are potential

FP7-ICT-287804- FASTER

WP1 – Requirements and Evaluation Criteria

FASTER_D1_1_STM_FF-20120228 Page 10 of 26

candidates for the use of reconfiguration. For example, micro-reconfiguration could be used to

specialize the domain size into the accelerator configuration, or partial region-based

reconfiguration could be used to switch between image and propagate calculations.

FP7-ICT-287804- FASTER

WP1 – Requirements and Evaluation Criteria

FASTER_D1_1_STM_FF-20120228 Page 11 of 26

3. Desktop-class domain

3.1. Domain scope & requirements

This domain covers applications potentially running on desktop workstations. This covers general-

purpose single processor systems (potentially composed of several cores), where performance

requirements can be achieved through high performance CPUs, SIMD based on vector processing

(e.g. Intel SSE2/3/4, ARM NEON) and multithreading with processes running in parallel on

several cores. Parallelization can be also exploited using a GPU commonly present in such
systems, through a dedicated API such as OpenCL or CUDA.

Key characteristics of HPC problems are:

 Single processor – a desktop workstation system will typically include a single processor,

composed of several high frequency cores (2 to 10), each one able to run one or two

threads in parallel.

 Average runtimes – a typical execution time runs between real-time and few hours (lower

than HPC, much higher than embedded).

 High computational requirements – some types of computation (arithmetic) can be

compared to HPC ones, however on a lesser scale. Typical optimizations include use of

SIMD extensions natively supported by the CPU, multithreading over the several cores

and computation off-loading over the available GPU using a compute API. L2 cache

supported by the CPU can also greatly improve the efficiency of code.

 Memory size – a desktop workstation system typically supports several GBs of RAM with

different patterns of access. When suitable, dedicated graphics memory with high

bandwidth can be also used by the associated GPU.

 User interface – most applications make use of some form of interactivity, through the use

of interfaces or visual feedbacks.

Potential concerns:

 Power consumption – one of the main restrictions to the development of faster CPUs and

GPUs is power consumption and heat dissipation. Power consumption can also be major

concern regarding mobile systems (however, less important than for embedded devices).

 Cost – depending on the area of application (e.g. mainstream applications), the cost of

ownership can also be a concern, as desktop systems are seen today as commodity.

3.2. Sample application: Ray Tracing

(CONTRIBUTORS: ST)

3.2.1. Application description

In future graphics applications (games, visualization, etc.), it will be important to achieve

photorealistic rendering in a coherent manner, in order to greatly improve picture quality with an

ever-increasing scene complexity, with support for real reflection, soft shadows, area light source,

indirect illumination, etc. This is a computationally intensive problem, addressed by the increasing

interest in real-time global illumination approaches. Within FASTER, STM is developing an

OpenCL global illumination scheme. This system should be flexible enough to help accelerating

different algorithms based on ray casting (ray tracing, path tracing, Monte Carlo ray tracing, etc.).

A 3D scene is described mathematically, using simple primitives such as triangles, polygons,

spheres, cylinders, and more. The properties of each primitive, such as position, orientation, scale

FP7-ICT-287804- FASTER

WP1 – Requirements and Evaluation Criteria

FASTER_D1_1_STM_FF-20120228 Page 12 of 26

and optical properties, are described by the scene. A virtual camera is placed into the scene, and an

image is rendered accordingly in casting rays simulating the reverse path of ray of lights, from the

origin of the camera through every pixel of its virtual focal plane. The color of a pixel is

determined by the potential intersections of the primary ray casted through it, with the 3D scene.

Photorealistic realism can be achieved when sufficient rays are casted, simulating with fidelity the

behavior of the light. Simulating the proper materials behaviors is also paramount.

3.2.2. Requirements

3.2.2.1 Computation Complexity

The raytracer application is a fairly flexible application, with a complexity that can be tailored to

the quality of the image to render. Three computationally intensive stages can be identified:

 Acceleration structure setup: all the geometric primitives can be potentially seen through

every pixel of the rendered image; as a consequence, all need to be tested for intersection.

This approach can be acceptable for simple scenes with very low geometry complexity

(~10s of primitives), but become impracticable for more complex databases with a

complexity of O(n
2
). As a consequence, an acceleration data structure should be built when

the scene to render is loaded, e.g. a voxel grid. With such approach, each primitive must be

referenced by at least one voxel of the grid, in comparing its axis-aligned bounding box

with the location of the voxels of the grid. The cost of this setup will be greatly

compensated during the rendering phase, when only a potentially low subset of primitives

will have to be intersected by each ray casted through every pixels of the rendered image.

The cost of the structure traversal must also be taken into account.

 Ray-primitive intersection: the rendering of an image demands the computation of the

intersection of geometric primitives of the scene (polygons, spheres, cylinders, etc.) with

rays casted through each pixel. Significant amount of the computation will be dedicated to

this sole purpose. The complexity of the intersection computation depends itself on the

nature of the primitive: the intersection ray-sphere is cheaper to compute than ray-polygon

for example. As a consequence, the corresponding amount of computation complexity is

very scene-dependent.

 Shading computation: when a visible intersection is found, its shading must be evaluated.

Depending on the material of the intersected primitive, this stage can be trivial or

extremely complex. A flat material ignoring shadowing will just return a color modulated

by a dot product between the primitive normal and the incident ray. A glossy material

taking account shadowing will potentially generated many additional rays (shadow rays,

secondary rays) that will be casted again against the 3D scene. The results of these

intersections will be used to define the final color for that primary ray.

The number of primary rays to cast is itself dependent of the resolution of the image to render. For

example, a VGA image (640x480 pixels) without anti-aliasing will demand 640x480 = 307200

primary rays. A full HD images with anti-aliasing (e.g. 16 samples per pixels) will demand
1920x1080x16 = 33177600 rays (or x108 more primary rays).

For accuracy reason, all the computations are performed in floating point. 32-bit single precision

is acceptable, but 64-bit floating points could be useful for scenes with important difference in
scales, at the cost of performances on some architectures.

FP7-ICT-287804- FASTER

WP1 – Requirements and Evaluation Criteria

FASTER_D1_1_STM_FF-20120228 Page 13 of 26

3.2.2.2 Type of Processing

A lot of vector computations (normalization, dot product, scaling, etc.) can take place, based on

vectors, 3D points or normals parameters. Intersection computations are also mathematically

intensive, with potential use for square roots. Trigonometric functions are also extensively used

for computing random directions or rotation transformation, for example.

3.2.2.3 Control Flow

A lot of tests are performed in order to generate the rendered pixels and to cut short the redundant

computations. This can introduce a disbalance in the cost of consecutive pixels, when one hits a

complex surface while the next misses it.

The rendering is performed in looping across all pixels of the screen and casting rays. For each
ray, the process is looping across all considered primitives in order to find the closest intersection.

3.2.2.4 Data Flow

A 3D scene uses a voxel grid. A voxel grid contains a 3D array of cells (or voxels), each one

containing an array of pointers to the primitives contained in that cell. The primitives themselves

contain the geometry information permitting to compute their intersection with a ray (location,

orientation, size, etc.). Each primitive also points to a shared material describing its optical
properties (reflectance, color, emissivity, etc.).

A 3D scene maintains also a list of primitives used as potential light sources (i.e. primitives with

an emissive material).

Figure 3 – raytracer data flow

The camera uses a render buffer where the final image will be generated. During rendering, the

camera creates a single primary ray originating at the camera location, and pointing in the

direction of a single sample inside a given pixel of a virtual focal plane. The 3D scene is
interrogated for potential intersection with this primary ray.

The 3D scene will interrogate the voxel grid for intersection. The first voxel encountered by the

primary ray is identified, and the intersections between the primary ray and all the primitives

contained by the voxel are computed. If no valid intersection is found, the process is repeated with

FP7-ICT-287804- FASTER

WP1 – Requirements and Evaluation Criteria

FASTER_D1_1_STM_FF-20120228 Page 14 of 26

the next voxel along the ray path until reaching the limit of the voxel grid, or until an intersection
is found.

If an intersection with a primitive is found (the closest of all the intersections with the primitives

of a single voxel), its shading must be computed using the material used for the corresponding

primitive. This shading computation may generated additional rays (e.g. shadow rays), casted in

turn into the scene following a similar process. The result of the shading stage is a color associated

with the intersection point. For a primary ray, this color is used to compute the color of the

original pixel by the camera. For a secondary ray (or shadow ray), this color is used to compute
the color of the surface hit by the primary ray.

3.2.2.5 Parallelism

Raytracing is an embarrassingly parallel problem. Each primary ray (i.e. each pixel sample) can

be processed independently and as consequence in parallel. By extension, each path (sequence of
rays from a pixel) can be also processed in parallel.

The scene description, and its associated voxel grid, must be shared as all primitives are

potentially seen from every pixel.

Random parameters can be generated during rendering (e.g. for jittering the location of the

samples inside a pixel in order to reduce aliasing, or to generated a sample inside a primitive).

However, if parallel processing is used, repeatability may become an issue if care is not taken. A

possible solution is to generate pre-computed random grids that will be used during rendering as

shared assets between processes.

The full version of the application (D5.4) will have some computation steps ported to OpenCL in

order to exploit this parallelism in an explicit way, relying on CL kernels for heterogeneous

platform support.

3.2.2.6 Memory Constraints

The memory used by the 3D scene is obviously dependent on its complexity: the more primitives
are defined, the more memory is required.

A render buffer is used to store the computed pixels. The size of this buffer is directly linked to its

resolution and must store RGB(A) values for each pixel. For example, 8-bit VGA image will

require 640x480x3 bytes = 900Kb, whereas a full HD fp image will require a buffer of

1920x1080x3x4 bytes = 23.7Mb.

The voxel grid itself stores pointers to primitives. Its resolution can be parameterized: a lower

resolution will demand less memory, providing a better traversal time but possibly more

intersection computations and worst overall performances. The balance between the size of the
voxel grid and the complexity of the 3D scene may be critical, and different per scene.

No texture is used in the current version of the raytracer.

3.2.2.7 Dependencies

An optional module based on OpenGL is used for visualization of the scene, position of the

camera, etc. However, this functionality is not required for the computation of the rendered image

itself and can be removed via compilation options or code #define. Without this support, the

application is self-dependent.

The full version of the application (D5.4) will have some computation steps ported to OpenCL.

FP7-ICT-287804- FASTER

WP1 – Requirements and Evaluation Criteria

FASTER_D1_1_STM_FF-20120228 Page 15 of 26

3.2.2.8 Targeted Performances

The image rendered by raytracing should be produced as fast as possible. Real time may be a

target for scenes with low complexity, or low resolution. However, such an ideal target may not be

reached for more complex setup. Consequently, some form of hardware acceleration can be

necessary to obtain a satisfying frame rate for scene with average complexity.

3.2.2.9 Reconfigurability

The raytracing application is highly reconfigurable, depending of the input that is processed to the
way the rendering is performed.

The workload is first dictated by the resolution of the rendered image. As at least one primary ray

is casted per pixel (and potentially more for antialiasing, even reaching thousands in path tracing

applications), the image size dictate the rendering complexity and the possible parallelization

width. Image resolutions can vary from VGA (640x480) up to full HD (1920x1080) or more.

Antialiasing is performed in casting more than one ray per pixel. As stated in the previous point,

this parameter has a direct influence on the workload of the application. Reasonable values can

range between 4 and 16 samples per pixels.

A ray tracing application spends a lot of time in computing intersections between a ray and a

geometric primitive. The nature of this primitive dictates the complexity of the intersection

computation. A highly optimized solution will target a single type of primitive (e.g. triangles),

with a possible hardware-accelerated support. However, the need for more complex surfaces (e.g.

cone, sphere, polygons, or even high-order surfaces) demands a reconfiguration of the application

in order to take into account these new primitives. High-order surfaces may even demand

additional stages, e.g. tessellation.

Intersections are expensive to compute, and their number should be reduced to the minimum. For

that effect, acceleration structures must be used in order to describe the scene in a more efficient

manner. Voxel grids or kd-trees are possible solutions. The choice of the nature of this structure

may depend on the type of scene to render, and the possible hardware support. For example, the

traversal of a voxel grid could be accelerated by a dedicated device. The resolution of the voxel

grid itself could influence some form of reconfiguration, according to the scene complexity for

example. Additionally, a static scene needs a single construction of the acceleration structure when

the scene is first described, and could be done as a pre-process. However, a dynamic scene with

transformable objects (animated position, size, etc.) needs a constant update of the corresponding
acceleration structure.

The color of a pixel is determined in following the path of a ray in the virtual 3D scene, after

subsequent interactions with the intersected primitives. The depth of this path can be controlled by

the user as a parameter to the application (in limiting it to 3 or 4 bounces for example), or

computed analytically. Consequently, this choice has a direct consequence in the computation
complexity of the rendering.

The shading of the point of a primitive hit by a ray must take into account the direct illumination

that it receives. This evaluation is done in casting shadow rays in the direction of the light sources.

If one shadow ray intersects something before reaching the targeted light source, an occlusion is

detected and the rendered point is potentially in shadow. In general, light sources have an area,

and consequently several shadow rays must be cast to sample it correctly. Once again, the choice

of the number of shadow ray can be influenced by some application parameters, with a direct

consequence on the quality of the rendering and its computation time (from a single shadow ray to

hundreds or more per intersection).

In addition to the obstruction factor, the shading of an intersection demands the computation of a

reflectance according to the material associated to the primitive. This computation can be very

FP7-ICT-287804- FASTER

WP1 – Requirements and Evaluation Criteria

FASTER_D1_1_STM_FF-20120228 Page 16 of 26

simple but unrealistic (based on simple dot products), or can involve complex shading models,

based on physical properties of real materials, themselves relying on additional ray casting for

evaluation of reflection or diffusion, for example. The choice of the shading model depends on the
scene to render, on the capabilities of the application and on desired performances.

The size of the scene itself impacts the rendering time. Indeed, the more primitives compose the

scene, the more intersections need to be computed. A correct acceleration structure tends to reduce

the impact of the scene complexity, but the number of primitives has nevertheless an important

influence on the rendering time. Typically, the number of primitives can range from 2 (e.g. test
scene) to several millions.

The final rendered image has generally a high-dynamic range, encoded in floating point, in order

to capture the full spectrum of the light intensity, from very bright light sources to dark

penumbras. However, the result needs generally to be displayed on a screen with a limited gamut,

and some post-processing is necessary (e.g. tone mapping). The presence of this last stage, and the

quality produced, can be freely parameterized by the application itself, and modified subsequently

in function of the output device targeted.

Finally, the level of parallelism that can be exploited also depends on the platform of execution.

On a multi-core platform, the image can be decomposed in independent sub-regions, and each

region is rendered independently by a single core. The scene data and the associated acceleration

structure have to be shared between processes. On more dedicated platforms (or GPUs for

example), each pixel can be processed independently by its own thread, reaching a very high level
of parallelism.

FP7-ICT-287804- FASTER

WP1 – Requirements and Evaluation Criteria

FASTER_D1_1_STM_FF-20120228 Page 17 of 26

4. Embedded domain

4.1. Domain scope & requirements

The term embedded system is used frequently nowadays to describe a wide variety of modern

devices/applications. As a victim of its generality, there is not a precise definition available but a

rather loose or subjective understanding of what actually can be characterized as an embedded

system. A broad definition could be as simple as that
1
: embedded computer system is any device

that includes a programmable computer but is not itself intended to be a general-purpose

computer, or a little more detailed
2
: an embedded system is an application that contains at least

one programmable computer (typically in the form of a microcontroller, a microprocessor or

digital signal processor chip) and which is used by individuals who are, in the main, unaware that

the system is computer-based.

Following the above definitions, typical embedded systems include common domestic appliances

(from clocks to fridges to televisions), portable devices, industrial control systems, cars, defense

systems, telecommunications equipment and so on. Compared to more familiar computing

systems, such as the personal computers (PCs), embedded systems are special purpose devices and

are usually designed with certain requirements or restrictions that may not apply for other systems.

For example, a medical device or an industrial control application may impose higher safety
requirements than a typical electronic device.

Key characteristics of embedded systems are:

 Small scale systems – an embedded system is typically restricted both in resources and

physical dimensions (there are however notable exceptions, e.g. in military applications)

 Short runtimes to real-time systems – embedded applications typically involve real-time

systems or systems that have to respond within tight time frames

 Varied computation requirements – since embedded systems span from simple

microcontroller-based electromechanical systems to high-performance highly complex

ones, computational requirements vary by a large degree

 Low memory requirements – embedded systems are not meant to be general-purpose

systems and therefore are designed with minimum memory requirements (this is also

typically associated to cost reduction and physical area minimization)

 Fast interconnects – embedded systems typically employ fast and proprietary interconnects

since they are closed systems that do not have to adhere to general-purpose interfaces or

standards, as a way to minimize latencies and complexity.

Since embedded systems are special purpose devices, apart from the programmable hardware they

include (in the form of a generic microcontroller, microprocessor or DSP), they often use custom

hardware, mainly for two reasons. The first one is related to the fact that they have to operate

under strict restrictions and requirements which simply cannot be met by software. For example,

in a cell phone, it is not easy to implement all the communication protocol complexity in software

since it has to operate under certain space, energy and thermal constraints. Thus dedicated circuits

are used to offload these computations.

The second reason for using dedicated hardware is attributed to the fact that the designer of an

embedded system has almost complete knowledge on how the device will be operated and

1 Wayne Wolf, “Computers as Components: Principles of Embedded Computing System Design”, 2nd Edition,
Morgan Kauffman Publications, 2008.
2 Michael J Pont, “Patterns for Time-Triggered Embedded Systems”, TTE Systems, ACM Press Books, 2011.

FP7-ICT-287804- FASTER

WP1 – Requirements and Evaluation Criteria

FASTER_D1_1_STM_FF-20120228 Page 18 of 26

furthermore the functionality of the device may be fixed. Since dedicated hardware can be very

efficient in terms of performance and energy consumption, the aforementioned allow for systems

that can be made cheaper and better performing. Continuing the previous example, the designer

knows the communication protocol that will be used by the cell phone, as well as all the basic

functionality that the phone has to offer and thus by using dedicated circuits he can meet energy

and performance requirements easier and cheaper (e.g. he can use simpler components and smaller

batteries).

From the above, one has to focus on the following key aspects of embedded systems: they are

closed systems (usually not meant to be user expandable or serviceable) and they are tightly

designed to meet certain specifications with cost being a major concern. That means that during

design, an embedded system can be tailor made to a specific structure suitable for a particular

application. Thus components can be directly interconnected, since they do not have to adhere to

general-purpose interfaces and topologies, minimizing latencies and complexity. On the other

hand, as the application domain is strictly characterized, memory and other resources are kept to

the bare minimum required by the application. Therefore embedded systems typically have access

to fewer resources than their general-purpose desktop-class counterparts.

The requirements of embedded systems can be summarized in the following list:

 Operation under strict predefined specifications

o Real-time systems

o Reliable systems

o Specific physical area, energy consumption and computational performance

requirements that may precondition the use of high-performance multi-core

processors and hardware accelerators (e.g. ASICs, FPGAs, GPUs)

 Minimum component count

o Low memory requirements (small memory sizes)

o Reduced IC count and manufacturing complexity

 Highly cost sensitive

o Component costs

o Energy consumption costs

o Design reuse, product upgradability

The major drawback of using dedicated hardware and interconnects is the lack of flexibility either

during design or after the system has been deployed. The former restricts the production of rather

generic systems that can be differentiated or used in other applications simply by software

changes. The latter is also important since the functionality of the device may have to be altered

after it has been delivered.

From the above, it is understandable that for certain applications where there are strict

performance and energy constraints that cannot be met by commodity or special purpose

programmable processors, flexibility has to be sacrificed through the use of dedicated hardware. A

solution that has been successfully presented for this problem is the use of configurable logic,

primarily through the use of FPGA devices. FPGAs can provide performance (as well as energy

consumption) close to the one offered by dedicated ASIC circuits, while they can be reconfigured

after they have been deployed, thus they form a middle ground between ASICs and software,
offering the best of both.

An application field that has embraced the use of FPGAs is the network embedded systems one.

Typically, network embedded systems require high levels of performance and commonly use

dedicated hardware along with high-performance processor cores. The need to support a multitude

(as well as evolving) communication protocols, to rapidly respond to critical changes and to

deploy flexible systems so as to protect the investments of customers are among the key drivers of

FP7-ICT-287804- FASTER

WP1 – Requirements and Evaluation Criteria

FASTER_D1_1_STM_FF-20120228 Page 19 of 26

adopting FPGA technology in those systems. In order to keep up for example with high data bit

rate communications while supporting encrypted messages, modern routers and other network

devices employ hardware implementations of the most popular cipher algorithms. As, however,

those are susceptible to vulnerabilities, in order to keep those systems safe, changes have to be

made as soon as those vulnerabilities are discovered and this is only feasible through the use of
reconfigurable devices.

The aforementioned reveal a possible weakness of using FPGA devices. More specifically, the

multitude of functions that may have to be implemented in an FPGA can be overwhelming thus

requiring either multiple devices or the use of the most expensive larger devices. On the other

hand, while small changes may be required, a device has to be reconfigured in order to apply those

changes. This results in (potentially) significant down-time and requires large storage resources

for configuration bitstreams. To alleviate these problems, modern FPGAs have started offering
partial reconfiguration options, which can be applied very effectively in those scenarios.

A certain class of network embedded systems that can deeply benefit from the use of FPGA

devices is Network Intrusion Detection Systems (NIDS). NIDS systems are becoming essential in

modern networks as security is escalating to be one of the most important aspects. They typically

operate under very high performance requirements, thus requiring the use of dedicated hardware,

however they have to be constantly updated to detect newly discovered vulnerabilities and attack

methods. That is the reason we consider it a prime candidate for FASTER. The application and its
requirements will be presented in Section 4.2.

A second application field that rapidly adopts FPGA technology, is the Image Analysis one.

Machine vision systems are becoming widespread and they are used in multiple domains, such as

surveillance, navigation, medical and control systems. A common requirement in these

applications is the need to analyze in real-time (or almost real-time) large image data structures,

thus the performance requirements are significant. Graphics Processing Units (GPUs) have often

been used as accelerators for these systems, since they offer high performance and they are

programmable, therefore they can adapt to different system requirements or incremental

changes/updates of a certain system. However the use of GPUs presents certain restrictions. First,

they are costly both in terms of actual component cost and in terms of increased second order

costs (they require additional cooling components, additional memory and controllers, larger

power supplies etc). Secondly, they typically require significant energy resources, which are

prohibitive in small portable systems. Thus, the use of FPGAs is becoming attractive. In Section

4.3, a particular application that we consider representative, key point detection and tracking, is

presented.

4.2. Sample application: Network Security and Intrusion Detection

(CONTRIBUTORS: Synelixis)

4.2.1. Application description

Network intrusion detection systems (NIDS) are widely adopted as high-speed and always-on

network access demand more sophisticated packet processing and increased network security.

Instead of checking only the header of incoming packets (as for example firewalls typically do),

NIDS also scan the payload to detect suspicious contents. The latter are described as signatures or

patterns and intrusion signature databases are made available that include known attacks. These

databases are regularly updated and an NIDS has to be able to provide a certain degree of

flexibility so that it can incorporate the updated security information.

FP7-ICT-287804- FASTER

WP1 – Requirements and Evaluation Criteria

FASTER_D1_1_STM_FF-20120228 Page 20 of 26

In the past, NIDS used mostly static patterns to scan packet payload. Recently, regular expressions

have also been adopted as a more efficient way to described hazardous contents. As such modern

rulesets are comprised of both static patterns and regular expressions (for example the popular

Snort IDS system upon Synelixis NIDS is based, includes more than 2000 static patterns and more

than 500 complex regular expressions).

The general requirements of NIDS systems are (i) high processing throughput, (ii) low

implementation cost (iii) flexibility in modifying and updating the content descriptions, and (iv)

scalability as the number of the content descriptions increases. The performance requirements are

fundamental to the correct functioning of an NIDS system, as if it cannot meet them, then the

system itself is susceptible to specific types of attacks (overload and algorithmic attacks). Thus

hardware-based NIDS systems are popular since they can provide the performance required.

NIDS systems implemented on reconfigurable hardware have the potential to marry the high

performance of hardware-based NIDS systems with the flexibility of software solutions. Specific

rules can be mapped to custom logic for maximum performance and changes (updates) to rules

can be achieved by reconfiguring the device. Depending on the nature of the update (incremental

versus more extensive ones), different reconfiguration approaches can be used: if a new rule is

added in the system (the usual case), micro-reconfiguration can dedicate free resources to this new

rule. If however, a major restructuring of the rules is performed (either as initial setup, a major

upgrade, or to respond to new requirements of the organization) then partial or even full

reconfiguration is needed.

4.2.2. Requirements

4.2.2.1 Computation Complexity

An analysis of the complexity of typical modern NIDS systems, such as the widely popular Snort
3

(upon which Synelixis NIDS system is based), reveals that by far the most complex task is the

string matching process
4
 and this is exactly the process that is most important to map on

reconfigurable hardware. Recent rulesets of the Snort IDS express rules in both static patterns and

regular expressions. The latter provide a more efficient way to represent hazardous packet payload

contents and as a result their usage is becoming rapidly more widespread.

For static patterns, some form of the Boyer-Moore
5
 algorithm is employed. For regular

expressions pattern matching Synelixis uses a solution based on nondeterministic finite automata

(NFA)
6
. Both computations have linear complexity regarding the length of the text string to

examine and the length of the expression to be tested.

4.2.2.2 Type of Processing

Computation is mostly based on bitwise comparisons and decision tree traversals. Concerning an

implementation in reconfigurable hardware, rather simple digital circuits are required to

implement the related processes, mostly comprised of comparators, shifters and FSM logic. It

should be noted however, that the way the algorithms work puts pressure in the memory

subsystem and require the use of complex memory structures, such as CAMs.

3 http://www.snort.org

4
 M. Fisk and G. Varghese, “An Analysis of Fast String Matching Applied to Content-based Forwarding and Intrusion Detection,”

in Techical Report CS2001-0670, University of California - San Diego, 2002
5
 R. S. Boyer and J. S. Moore, “A fast string searching algorithm,” Communications of the ACM, vol. 20, no. 10, pp. 762–772, Oct.

1977
6 Joao Bispo; Ioannis Sourdis; Joao M.P.Cardoso; Stamatis Vassiliadis, "Regular expression matching for reconfigurable packet

inspection," Field Programmable Technology, 2006. FPT 2006. IEEE International Conference on , vol., no., pp.119-126, Dec.
2006

FP7-ICT-287804- FASTER

WP1 – Requirements and Evaluation Criteria

FASTER_D1_1_STM_FF-20120228 Page 21 of 26

4.2.2.3 Control Flow

Deterministic Finite Automata (DFAs) are typically used as control flow mechanisms for software

implementations of the string matching processes, since sequential code is more suitable of

keeping track of single active states. For a hardware implementation though, a DFA-based control

structure can produce inefficient designs in terms of area (logic and memory). A worst case study
7

shows that a single regular expression of length n can be expressed as a DFA of O(Σ
n
) states.

Synelixis approach is based on Nondeterministic Finite Automata (NFAs). Compared with a DFA,

an NFA representation for the aforementioned case has only O(n) states. The drawback is that an

NFA has multiple active states, however since hardware is inherently concurrent, it is relatively

easy to concurrently track those states.

4.2.2.4 Data Flow

NIDS is a streaming application. Data flow is linear as network packets pass through the NIDS

system from a source to an end server. No data storage is performed nor is there any loop-back
feed.

4.2.2.5 Parallelism

Parallelism can be exploited in two ways for an NIDS system. Different network packets can be

processed individually; therefore if there are multiple feeds of packets (e.g. a central point with

multiple network links) these can be processed simultaneously. On the other hand, string matching

on a particular payload can be executed in parallel for all applicable rules.

4.2.2.6 Memory Constraints

The memory requirements of Synelixis NIDS system are directly related to the number of static

patterns, as well as the static strings in the regular expressions included in the ruleset that has to be

examined. Synelixis implementation requires a separate module for each regular expression. Using

(partial or full) reconfiguration to update the ruleset means that each regular expression module

can be hardwired to a specific circuit and no memory has to be dedicated to store control
information in order to compute current or future regular expressions.

4.2.2.7 Targeted Performances

Performance is critical for an NIDS system. On one hand, the communication links offer higher

and higher bandwidths putting pressure on the NIDS system as more packets per second have to

be processed. On the other hand, evolving and more sophisticated attacks increase continuously

the ruleset of an NIDS system, thus requiring more processing per packet.

It should be noted that the performance of an NIDS system is also directly related to the level of

security it can offer. There are specific types of attacks, named overload attacks8, in which an

attacker overloads an intrusion detection system by flooding it with innocuous packets until the

system starts dropping packets. There is then a high probability that the detection system will not

catch an attack that is interjected in this stream of packets.

To have strong assurance that a detection system is not subject to such attacks, the system must be

able to support full utilization of the network that it is monitoring. As a result, the higher the

performance (as measured in terms of throughput) that the NIDS system can offer, the greater the
appeal of the solution to a broader market.

7
 J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Languages and Computation. Reading, Mass.: 2nd Ed.,

Addison-Wesley, 2001
8 Vern Paxson, “Bro: A system for detecting network intruders in real-time,” Computer Networks, vol. 31, no. 23-24, pp. 2435–
2463, Dec. 1999

FP7-ICT-287804- FASTER

WP1 – Requirements and Evaluation Criteria

FASTER_D1_1_STM_FF-20120228 Page 22 of 26

4.2.2.8 Reconfigurability

An NIDS system has to be updated in a number of different ways throughout its operation:

 Small incremental updates may be required to add, change or expand certain IP addresses

or address ranges that appear in detection rules

 New static pattern rules may have to added to the static ruleset or changes to the current

patterns included in the ruleset may have to applied

 Updates in the regular expressions to cover more cases or correct mishandling of certain

detection rules

 New regular expressions may have to added

 Overall updates to the system may have to be performed in case of new policies or large-

scale update to the operation of the NIDS system.

From the above, micro-reconfiguration methods appeal to the small incremental updates, as these

appear to be the most frequent and require the smallest changes. This way, the system operation is

practically not disrupted at all, while changes are applied almost instantly. Region-based

reconfiguration seems more attractive for updates that require more significant circuit-level

changes, such as significant updates or additions to the regular expression that are used to detect

specific classes of patterns. Lastly, static partial or full reconfiguration may be required for
system-level changes (as a result of a new policy for example).

4.3. Sample application: Image Analysis

(CONTRIBUTORS: ST)

4.3.1. Application description

STM is developing a demonstrator in the domain of image analysis for keypoint detection and

tracking in order to address another promising domain, Augmented Reality. The detection of the

feature points is done by the FAST (Features from Accelerated Segment Test) algorithm. The
tracking itself is performed by PKLT (Pyramidal Kanada Lucas Tomasi).

4.3.2. Requirements

4.3.2.1 Computation Complexity

The corner detection step (FAST) needs to perform a high number of comparisons between pixel

luminances inside a single image. The resulting features are passed to PKLT for tracking.

The tracking step (PKLT) is much more compute intensive. Filtered images need to be produced

from the original frame, locale derivatives and gradient matrices must be compute per feature

location. An iterative process is performed in order to compute the optical flow, based on a
cascade of image at different level of details.

4.3.2.2 Type of Processing

The Image Analysis pipeline takes a video frame in input, identifies unique features in the image

and track their locations between successive frames. This complex task is performed by two main

stages implementing a corner detection algorithm (FAST) and a corner tracking algorithm

(PKLT).

FP7-ICT-287804- FASTER

WP1 – Requirements and Evaluation Criteria

FASTER_D1_1_STM_FF-20120228 Page 23 of 26

In the front-end, FAST processes each pixel of an input luminance image (single channel) for

identifying potential corners, in comparing the luminance value of the pixel with its surrounding

neighbors (located on a rasterized circle centered on the processed pixel). If a pixel is identified as

possible corner, its associated score is computed according to the same neighborhood. This score

represents its qualities as good corner compared to other candidates immediately surrounding it.

Finally, a non-maximum suppression step occurs over all the corner candidates, suppressing

potential corners adjoining another one with a better score. The final result consists in a list of
corners, or features, which has to be tracked during the video sequence.

The back-end of the pipeline consists in the feature tracker, implemented by PKLT. The problem

to solve here is to find the position of a corner in the current frame, knowing its position in the

previous one. One solution is to compare a window in the current frame, to a window centered on

the corner in the previous one. The translation that minimizes the difference between these two
windows defines the optical flow, solution of the tracking phase.

The robustness and accuracy of this process depends on the size of the window considered. A

large window offers a robust solution (for large movement for example), at the cost of precision.

A small window increases the accuracy of the tracking, but may miss some correspondences.

Consequently, a pyramid of images formed from the filtering of the full size frame at different
resolution, offers a solution to this dilemma.

Hence, PKLT consists in producing the filtered cascade of input images, computing a spatial

gradient matrix based on local derivatives around the corner to track at each resolution, and to

perform an iterative Lucas-Kanade step for computing the local optical flow using the matrix

previously computed. The final optical flow is the accumulation of the local optical flows at all the
detail levels.

4.3.2.3 Control Flow

FAST consists in different level of loops, first across all the pixels of an input image, then across

all the potential detected features, then again with data decimation.

PKLT loops across every feature detected by FAST. Two inner loops are processing these

features, one covering the different level of details, while the last one covers each step of the

iterative Kanade-Lucas processing for the current level of details. For each step, loops are used to
compute gradient matrices and mismatch vectors over a given pixel window.

4.3.2.4 Data Flow

A stream of video frames is fed into FAST in order to detect features in these frames.

Figure 4 – FAST pipeline

A stream of feature list is sent to PKLT for tracking. A stream of optical flows is produced by this

tracking stage.

FP7-ICT-287804- FASTER

WP1 – Requirements and Evaluation Criteria

FASTER_D1_1_STM_FF-20120228 Page 24 of 26

Figure 5 – PKLT pipeline

4.3.2.5 Parallelism

There are different levels of parallelism inside this pipeline.

The first level lies in the FAST front-end stage. Each pixel has to be compared to its neighbors for

potentially being qualified as corner. As a consequence, this task can be performed in parallel for

each pixel, independently. The same observation can be made for the score computation,

following a similar process. However, the number of scores to compute is about two degrees of

magnitude lower than the number of pixel to process (e.g. a VGA image is composed of 640x480

= 307200 pixels to process, with potentially ~1000 corners depending on the nature of the image
itself).

The second level of parallelism lies in the PKLT back-end stage.

A cascade of images, at different level of details, has to be generated for the frame under process.

A given level of details is computed according to the previous one and does not offer much

parallelism. However, each pixel of a given level is produced by the filtering of the pixel of the

previous level. This filtering process can be performed in parallel for each pixel, independently
from its neighbor.

The gradient matrices and optical flows can be computed in parallel for each featured tracked by

the algorithm.

4.3.2.6 Memory Constraints

Video frames are the most demanding in term of memory. FAST is using the luminance of a YUV
input frame. PKLT is using the same frame, at different level of details (e.g. 4). For example,

FP7-ICT-287804- FASTER

WP1 – Requirements and Evaluation Criteria

FASTER_D1_1_STM_FF-20120228 Page 25 of 26

a VGA frame will demand 640x480 = 300Kb for the top level of details, or 400Kb for the
complete pyramid.

4.3.2.7 Dependencies

The current version does not rely on any dependencies. Final release may be using OpenCL for

explicit parallelization.

4.3.2.8 Targeted Performances

The performance targeted is real-time processing on an embedded system, for at least VGA
resolution.

4.3.2.9 Reconfigurability

Some features of the Imaging Pipeline can be reconfigured.

The most obvious parameterization lies in the resolution of the input video stream. At minimum, a

single channel VGA stream should be supported. With the availability of better and cheaper
cameras, and increasing compute power, this resolution will increase certainly.

The frame rate of the input stream has also a direct impact on the performance of the application,

ranging from 15Hz to 30Hz and above.

The FAST algorithm detects corners in comparing the intensity of pixels surrounding the

evaluated point. The required number of consecutive pixels lower or above a given threshold has

an influence on the number of corners, and their quality. Typically, a minimum of 9 consecutive

pixels over a neighborhood of 16 is considered satisfying, but this limit can be increased in order

to reach better results. This same observation applies to the choice of the threshold themselves,
both in the corner detection and in the score phases.

During tracking, the PKLT algorithm works on windows of pixels (e.g. 9x9). The size of this

window has a direct impact on the precision of the tracking, but also on its robustness.

Consequently, depending on the application and the resolution of the input, different window size

may be considered.

PKLT relies on different level of details of the input frame. For low resolution images (e.g. VGA),

4 levels of details is acceptable. However, with the increasing camera resolutions, the number of

levels will also increase in order to keep a precise tracking.

Finally, the accuracy of the KL step performed by PKLT is controlled through an accuracy

threshold, defined as an application parameter. The modification of this threshold has a direct

impact on the number of KL iterations and consequently on the complexity of the computation
and the final accuracy of the tracking.

FP7-ICT-287804- FASTER

WP1 – Requirements and Evaluation Criteria

FASTER_D1_1_STM_FF-20120228 Page 26 of 26

5. Conclusion
Three application domains are addressed by FASTER, from HPC to desktop applications and

embedded systems. These comprise a wide range of very different requirements, from system

point of view (power consumption, available computational capabilities, memory, bandwidth, etc.)

to application perspective (parallelization, execution times, data volume, computation complexity,

etc.) and can benefit from different methods of reconfiguration in various ways.

As a representative of the HPC domain, Reverse Time Migration can use micro-reconfiguration to

handle variations in domain size or in the number of timesteps for example. Partial region-based

reconfiguration could be used to accommodate the change from imaging to propagation

computation, while full reconfiguration may be necessary only when the physical model or other

less frequent changes are necessary.

Ray-tracing is a demanding desktop/workstation class application, which may employ different

reconfiguration methods to achieve the desire performances and flexibility. Different levels of

reconfiguration can handle the various adaptable aspects of the application: from modification of

the parameterization, such as secondary ray depth or pixel sampling, to more important

reconfiguration of the type of supported geometric primitives, to even the global acceleration

structure or the shading models used by the rendering process itself. It may even be beneficial to

support reconfigurable accuracy (precision) of the intersection computations.

From the embedded domain, a NIDS system implemented on FPGA, can use micro-

reconfiguration in order to accommodate frequent small changes to the detection rules (usually

associated with IP addresses), while for larger changes to the ruleset (such as new regular

expressions) region-based reconfiguration is an optimal solution. Full reconfiguration may be

employed in cases where significant changes to the operation of the NIDS system are requires, as

for example the application of a new system policy. Similarly, Image Analysis, another

representative application of the embedded domain, may profit of reconfigurability in order to

efficiently handle variations in video data input or different sizes of window used during feature

detection or tracking, etc.

These requirements will have to be factored in order to define a unique and suitable design flow,
as described in the Deliverable D1.2 “Requirements of FASTER models, methods and tools”.

