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Disclaimer 
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the full publication of this document. The commercial use of any information contained in this 

document may require a license from the proprietor of that information.  
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1. Introduction 
(CONTRIBUTORS: ALL) 

This document reviews the domains of application covered by the FASTER project, along with 

the various requirements of test applications corresponding to these domains and provided by the 

three industrial beneficiaries. These applications cover different targeted application fields, from 

high-performance computing (HPC), workstation-class processing such as rendering, to embedded 

computations and image processing. 

  



FP7-ICT-287804- FASTER 

WP1 – Requirements and Evaluation Criteria 

FASTER_D1_1_STM_FF-20120228  Page 5 of 26 

2. HPC (High Performance Computing) domain 

2.1. Domain scope & requirements 

HPC (High Performance Computing) addresses highly complex computational problems, due to 

the large amounts of data to process and/or the complexity of the involved calculation. Such tasks 

are typically performed on supercomputing-class systems or clusters, or on optimized parallel 
architectures when suitable. 

Key characteristics of HPC problems are: 

 Large scale - an HPC system will typically consist of many compute nodes (ranging from 

dozens to tens of thousands). 

 Long runtimes - jobs will run for hours up to months at a time 

 High computational requirements - in aggregate, arithmetic or other processing 

requirements are much higher than in desktop applications. However, these can be 

delivered either by a number of very powerful compute nodes or by a larger number of less 

powerful compute nodes. 

 High memory requirements - many HPC problems utilize large volumes of data in 

memory, which can be located in each node or spread across many compute nodes. Within 

each node, the computations generally require very high bandwidth to memory. 

 Limited user interactivity - due to the long running nature of most HPC applications, even 

on the largest supercomputers, user interaction is normally relatively limited, for example 

setting up a job and then awaiting its completion. 

 Fast interconnect - HPC systems often have faster inter-node interconnects compared to 

standard computer servers or desktop systems. This is required to satisfy inter-node 

communication during compute jobs execution. At the same time many HPC jobs may be 

at least to some degree embarrassingly parallel and require minimal inter-node bandwidth.  

 

Because of the large scale of HPC systems, some concerns that are only peripherally important in 

desktops become much more significant: 

 Physical size - since there will be many compute nodes in an HPC system, each node 

should be as small as possible to minimize the size of the overall system. Space usage has 

an impact on build and running costs, both directly (e.g. rent) but also less directly (e.g. 

increased maintenance personnel required, longer/more complex cabling). 

 Power consumption - large-scale HPC installations already consume many megawatts, and 

power consumption is a first-order design constraint. Even for smaller scale HPC systems 

(a few dozen nodes) there is typically a limit on the power available. 

 Reliability and fault tolerance - while the failure of an individual node may be relatively 

rare, with many nodes the probability that one will fail is dramatically increased and with 

long execution times there is a risk that complete jobs may never run to completion 

without encountering an error. Nodes themselves must be as reliable as practical and the 

HPC system itself must tolerate failures, for example by supporting checkpointing and 

restarting of jobs. 
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2.2. Sample application: Reverse Time Migration (RTM) 

(CONTRIBUTORS: MAXELER) 

2.2.1. Application description 

Some of the most computationally intensive geoscience algorithms involve simulating wave 

propagation through the earth. The objective is typically to create an image of the subsurface from 

acoustic measurements performed at the surface. To create an image of the subsurface, a low 

frequency acoustic source on the surface is activated and the reflected sound waves are recorded 

by (typically) tens of thousands of receivers. We term this process a “shot”, and it is repeated 

many thousands of times while the source and/or receivers are moved to illuminate different areas 

of the subsurface. The resulting dataset is dozens or hundreds of terabytes in size. The problem of 

transforming this dataset into an image is computationally intensive and can be solved with a 

variety of techniques. Reverse Time Migration (RTM) is a high end technique for generating 
images of the earth and is used in complex geologies to give detailed subsurface images.  

 

The concept behind RTM is relatively simple. We start with a known earth model. This earth 

model might be simply acoustic velocity, but could also be anisotropic, elastic, or even visco-

elastic. Scientists conduct two modeling experiments simultaneously through the earth model. 

Both attempt to simulate the seismic experiment conducted in the field—one from the source’s 

perspective and one from the receivers’ perspective. The source experiment involves injecting our 

estimated source wavelet into the earth and propagating it from t=0 to our maximum recording 

time tmax, creating a 4D source field s(x, y, z, t). Typical values for x,y,z,t are ~1000-10000. At 

the same time, we conduct the receiver experiment. We inject and propagate our recorded data 

starting from tmax to t0, creating a similar 4D volume g(x, y, z, t). We have a reflection where the 

energy propagated from the source and receiver is located at the same position at the same time, 

thus an image can be obtained by summing the correlation of the source and receiver wavefield at 
every time point and every shot, i.e.: 

 

 (     )   ∑ ∑   (       )    (       )

                

 

 

We frequently wish to collect subsurface offset gathers, cross-correlating source and receiver 
wavefields by various shifts: 

 

 (       )   ∑ ∑   (         )    (         )

                

 

 

h is typically a few dozen, and it is this subsurface offset gather calculation which provides a 

compelling use-case for partial reconfiguration since it is a significantly different calculation 

compared to the wave propagation processing. This can be seen in the pseudo-code for the 

Maxeler RTM shown in Figure 1. 

 



FP7-ICT-287804- FASTER 

WP1 – Requirements and Evaluation Criteria 

FASTER_D1_1_STM_FF-20120228  Page 7 of 26 

The first step of the computation is to simulate the propagation of the source wave to tmax, then 

the computation is reversed and the source and receiver wavefields are propagated together from 

tmax to t0. This method involves 50% more computational effort than a naive direct 

implementation but is necessary to avoid the storage of large 4D state fields (which have sizes of 

many terabytes). There are two major computation kernels: propagate and image, which are 

fundamentally different. With sufficiently low-overhead dynamic (partial) reconfiguration, RTM 

could benefit substantially from time-division multiplexing of the FPGA resources between the 
propagate and image computations. 

 

 

Figure 1 - Pseudo-code for RTM 

2.2.2. Requirements 

2.2.2.1 Computation Complexity 

RTM is computationally very intensive - O(nshots  ntimesteps  nx  ny  nz) - however it has a 

regular computational structure. Both the image and propagate kernels apply fundamentally the 

same calculation to every point in the 3D problem domain, though there are some additional 
calculations needed at the boundaries.  

2.2.2.2 Type of Processing 

The main arithmetic operations for RTM are multiplications and additions, however the 

computation also puts significant pressure on the memory system both in terms of capacity and 

bandwidth. For nx=ny=nz=1000 and 50 subsurface offsets, the total memory required is over 

migrate_shot(shot_id) { 

 src_curr = zeros(nx,ny,nz);     src_prev = zeros(nx,ny,nz); 

 rcv_curr = zeros(nx,ny,nz);     rcv_prev = zeros(nx,ny,nz); 

 image = zeros(nx,ny,nz,nh); 

 

 model = load_earthmodel(shot_id); 

 

 for t = 0 .. tmax { 

  add_stimulus(shot_id, t, src_curr); 

  propagate(src_curr, src_prev, model); 

 } 

 

 swap(curr_src, prev_src); // reverse time direction 

 

 for t = tmax .. 0 { 

  propagate(src_curr, src_prev, model); 

 

  add_receiver_data(shot_id, t, rcv_prev) 

  propagate(rcv_curr, rcv_prev, model); 

 

  if (i % image_step == 0) // typically every 5-10 steps 

   image(src_curr, rcv_curr, image); 

 } 

} 
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200GB, while this data must be quickly read in/written out of the chip. The performance of most 
RTM implementations is memory-bandwidth limited. 

2.2.2.3 Control Flow 

Control for the RTM application is essentially the loop structures detailed in Figure 1. In a FPGA 

accelerated implementation these control structures remain on the CPU as software loops. The 

FPGA executes the iteration loop over nx, ny, nz and manages the control associated with applying 

differing operations at different points in the domain. In hardware this consists of counters 

keeping track of position, and comparators evaluating that position against special case conditions 

(e.g. boundaries).  

The control flow of the application depends entirely on input parameters and is independent of the 
results of the computation, so can be completely predicted in advance. 

2.2.2.4 Data Flow 

The propagate or image kernels can be implemented as a streaming datapath with a feed-forward 

pipeline. There is no feedback of values within a single timestep.  

2.2.2.5 Parallelism 

There are several potential methods to parallelize RTM: 

 Shots - Each shot represents typically many hours of computation and can be computed 

independently from any other shot, with the final images summed. 

 Domain blocks - a single 3D domain for a single shot can be split into multiple domain 

blocks which can be processed by multiple processing chips. Each domain block must 

communicate boundary regions with the adjacent blocks. 

 Spatial points - multiple adjacent spatial output points can be computed in parallel. These 

points share almost all of their input data. 

 Pipelining - a highly optimized RTM datapath typically consists of many levels of 

pipelining which can be efficiently employed because of the lack of feedback loops. 

Ideally we opt to parallelize shots over multiple nodes in a cluster, domain blocks over multiple 

processing chips within a single compute node (e.g. 4 FPGAs in a Maxeler MaxNode) and spatial 
points within a chip.  

2.2.2.6 Memory Constraints 

RTM is a memory-intensive algorithm. Two key features determine the memory consumption.  

The first is the physics model employed. For Maxeler's RTM we use an acoustic isotropic model 

of the earth, which is described by one earth model parameter volume (velocity) and requires us to 
store two pressure states for each wavefield. This totals 5 volumes.  

The image volume containing the computed subsurface offset images, is 4D with a size 

determined by the number of subsurface offsets being collected. 

In CPU implementations, the data volumes are stored using 4-byte single precision floating point. 

In FPGA accelerated implementations we can compress the model volumes to 2-bytes per point. 

Figure 2 shows the memory required for RTM. 
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nh Total memory 

required (CPU) 

Total memory 

required (FPGA) 

1 24GB 12GB 

10 60GB 30GB 

25 120GB 60GB 

50 220GB 110GB 

Figure 2- Table showing memory required for RTM with nx=ny=nz=1000 and varying 

numbers of subsurface offsets (nh) 

This memory contains the state of the calculation and must be maintained while the shot is 

computed. This means that any reconfiguration of the chip during computation must preserve the 
memory contents. 

2.2.2.7 Targeted Performances 

RTM is a performance-sensitive HPC application, however there are no real-time constraints. It is 

advantageous to be able to compute a result as quickly as possible. In real use, a timeframe of 

approximately 2 weeks to compute a full RTM is typical using conventional processors. An 

accelerated implementation should be at least 10x faster to be considered as an attractive 

alternative. Individual processing timesteps should take of the order of hundreds of milliseconds to 

a few seconds. If the FPGA is to be reconfigured to execute the image calculation, it should 

therefore be able to do so twice every image_step timesteps without significant performance 

penalty (i.e. of the order of once every second).  

2.2.2.8 Reconfigurability 

The characteristics of individual RTM runs depend heavily on the configuration. Some parameters 

commonly change every timestep or few timesteps: 

 Type of computation (imaging or propagation): Every few timesteps the image calculation 

is applied, which is a different calculation compared to the propagate calculation. 

 Stimulus data injection: Some values may be written into the domain (for example an 

initial stimulus wavelet, or receiver data recorded during a survey). The data values and 

position those values should be written to could change. 

 Receiver data readback: Values may be read out of the domain to the CPU during a 

timestep. The position that these values should be read from may change. 

 

Parameters that could change for every shot: 

 Domain size (nx, ny, nz) and number of timesteps (nt): This effects both memory use on 

the node (O(nxnynz)) and computational cost per node (O(nxnynznt)).  

 Number of subsurface offsets (nh): This effects memory required to hold the offset image 

volumes and the amount of computation required to compute them. 

Other parameters which change less frequently are: 

 Physics model: this fundamentally changes the nature of the computation and the amount 

of storage. 

 Size of convolution stencil operator: this can offer more or less accuracy at varying 

computational costs. 

 

Parameters that change rarely (e.g. physics model) are probably most suited to full reconfiguration 

since there is little impact of doing so. Parameters that change more frequently are potential 
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candidates for the use of reconfiguration. For example, micro-reconfiguration could be used to 

specialize the domain size into the accelerator configuration, or partial region-based 

reconfiguration could be used to switch between image and propagate calculations. 
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3. Desktop-class domain 

3.1. Domain scope & requirements 

This domain covers applications potentially running on desktop workstations. This covers general-

purpose single processor systems (potentially composed of several cores), where performance 

requirements can be achieved through high performance CPUs, SIMD based on vector processing 

(e.g. Intel SSE2/3/4, ARM NEON) and multithreading with processes running in parallel on 

several cores. Parallelization can be also exploited using a GPU commonly present in such 
systems, through a dedicated API such as OpenCL or CUDA. 

Key characteristics of HPC problems are: 

 Single processor – a desktop workstation system will typically include a single processor, 

composed of several high frequency cores (2 to 10), each one able to run one or two 

threads in parallel. 

 Average runtimes – a typical execution time runs between real-time and few hours (lower 

than HPC, much higher than embedded). 

 High computational requirements – some types of computation (arithmetic) can be 

compared to HPC ones, however on a lesser scale. Typical optimizations include use of 

SIMD extensions natively supported by the CPU, multithreading over the several cores 

and computation off-loading over the available GPU using a compute API. L2 cache 

supported by the CPU can also greatly improve the efficiency of code. 

 Memory size – a desktop workstation system typically supports several GBs of RAM with 

different patterns of access. When suitable, dedicated graphics memory with high 

bandwidth can be also used by the associated GPU. 

 User interface – most applications make use of some form of interactivity, through the use 

of interfaces or visual feedbacks. 

Potential concerns: 

 Power consumption – one of the main restrictions to the development of faster CPUs and 

GPUs is power consumption and heat dissipation. Power consumption can also be major 

concern regarding mobile systems (however, less important than for embedded devices). 

 Cost – depending on the area of application (e.g. mainstream applications), the cost of 

ownership can also be a concern, as desktop systems are seen today as commodity. 

3.2. Sample application: Ray Tracing 

(CONTRIBUTORS: ST) 

3.2.1. Application description 

In future graphics applications (games, visualization, etc.), it will be important to achieve 

photorealistic rendering in a coherent manner, in order to greatly improve picture quality with an 

ever-increasing scene complexity, with support for real reflection, soft shadows, area light source, 

indirect illumination, etc. This is a computationally intensive problem, addressed by the increasing 

interest in real-time global illumination approaches. Within FASTER, STM is developing an 

OpenCL global illumination scheme. This system should be flexible enough to help accelerating 

different algorithms based on ray casting (ray tracing, path tracing, Monte Carlo ray tracing, etc.).  

A 3D scene is described mathematically, using simple primitives such as triangles, polygons, 

spheres, cylinders, and more. The properties of each primitive, such as position, orientation, scale 
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and optical properties, are described by the scene. A virtual camera is placed into the scene, and an 

image is rendered accordingly in casting rays simulating the reverse path of ray of lights, from the 

origin of the camera through every pixel of its virtual focal plane. The color of a pixel is 

determined by the potential intersections of the primary ray casted through it, with the 3D scene. 

Photorealistic realism can be achieved when sufficient rays are casted, simulating with fidelity the 

behavior of the light. Simulating the proper materials behaviors is also paramount. 

3.2.2. Requirements 

3.2.2.1 Computation Complexity 

The raytracer application is a fairly flexible application, with a complexity that can be tailored to 

the quality of the image to render. Three computationally intensive stages can be identified: 

 Acceleration structure setup: all the geometric primitives can be potentially seen through 

every pixel of the rendered image; as a consequence, all need to be tested for intersection. 

This approach can be acceptable for simple scenes with very low geometry complexity 

(~10s of primitives), but become impracticable for more complex databases with a 

complexity of O(n
2
). As a consequence, an acceleration data structure should be built when 

the scene to render is loaded, e.g. a voxel grid. With such approach, each primitive must be 

referenced by at least one voxel of the grid, in comparing its axis-aligned bounding box 

with the location of the voxels of the grid. The cost of this setup will be greatly 

compensated during the rendering phase, when only a potentially low subset of primitives 

will have to be intersected by each ray casted through every pixels of the rendered image. 

The cost of the structure traversal must also be taken into account. 

 Ray-primitive intersection: the rendering of an image demands the computation of the 

intersection of geometric primitives of the scene (polygons, spheres, cylinders, etc.) with 

rays casted through each pixel. Significant amount of the computation will be dedicated to 

this sole purpose. The complexity of the intersection computation depends itself on the 

nature of the primitive: the intersection ray-sphere is cheaper to compute than ray-polygon 

for example. As a consequence, the corresponding amount of computation complexity is 

very scene-dependent. 

 Shading computation: when a visible intersection is found, its shading must be evaluated. 

Depending on the material of the intersected primitive, this stage can be trivial or 

extremely complex. A flat material ignoring shadowing will just return a color modulated 

by a dot product between the primitive normal and the incident ray. A glossy material 

taking account shadowing will potentially generated many additional rays (shadow rays, 

secondary rays) that will be casted again against the 3D scene. The results of these 

intersections will be used to define the final color for that primary ray. 

The number of primary rays to cast is itself dependent of the resolution of the image to render. For 

example, a VGA image (640x480 pixels) without anti-aliasing will demand 640x480 = 307200 

primary rays. A full HD images with anti-aliasing (e.g. 16 samples per pixels) will demand 
1920x1080x16 = 33177600 rays (or x108 more primary rays). 

 

For accuracy reason, all the computations are performed in floating point. 32-bit single precision 

is acceptable, but 64-bit floating points could be useful for scenes with important difference in 
scales, at the cost of performances on some architectures. 



FP7-ICT-287804- FASTER 

WP1 – Requirements and Evaluation Criteria 

FASTER_D1_1_STM_FF-20120228  Page 13 of 26 

3.2.2.2 Type of Processing 

A lot of vector computations (normalization, dot product, scaling, etc.) can take place, based on 

vectors, 3D points or normals parameters. Intersection computations are also mathematically 

intensive, with potential use for square roots. Trigonometric functions are also extensively used 

for computing random directions or rotation transformation, for example. 

3.2.2.3 Control Flow 

A lot of tests are performed in order to generate the rendered pixels and to cut short the redundant 

computations. This can introduce a disbalance in the cost of consecutive pixels, when one hits a 

complex surface while the next misses it. 

The rendering is performed in looping across all pixels of the screen and casting rays. For each 
ray, the process is looping across all considered primitives in order to find the closest intersection. 

3.2.2.4 Data Flow 

A 3D scene uses a voxel grid. A voxel grid contains a 3D array of cells (or voxels), each one 

containing an array of pointers to the primitives contained in that cell. The primitives themselves 

contain the geometry information permitting to compute their intersection with a ray (location, 

orientation, size, etc.). Each primitive also points to a shared material describing its optical 
properties (reflectance, color, emissivity, etc.). 

A 3D scene maintains also a list of primitives used as potential light sources (i.e. primitives with 

an emissive material). 

 

 

Figure 3 – raytracer data flow 

 

The camera uses a render buffer where the final image will be generated. During rendering, the 

camera creates a single primary ray originating at the camera location, and pointing in the 

direction of a single sample inside a given pixel of a virtual focal plane. The 3D scene is 
interrogated for potential intersection with this primary ray. 

The 3D scene will interrogate the voxel grid for intersection. The first voxel encountered by the 

primary ray is identified, and the intersections between the primary ray and all the primitives 

contained by the voxel are computed. If no valid intersection is found, the process is repeated with 
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the next voxel along the ray path until reaching the limit of the voxel grid, or until an intersection 
is found. 

If an intersection with a primitive is found (the closest of all the intersections with the primitives 

of a single voxel), its shading must be computed using the material used for the corresponding 

primitive. This shading computation may generated additional rays (e.g. shadow rays), casted in 

turn into the scene following a similar process. The result of the shading stage is a color associated 

with the intersection point. For a primary ray, this color is used to compute the color of the 

original pixel by the camera. For a secondary ray (or shadow ray), this color is used to compute 
the color of the surface hit by the primary ray. 

3.2.2.5 Parallelism 

Raytracing is an embarrassingly parallel problem. Each primary ray (i.e. each pixel sample) can 

be processed independently and as consequence in parallel. By extension, each path (sequence of 
rays from a pixel) can be also processed in parallel.  

The scene description, and its associated voxel grid, must be shared as all primitives are 

potentially seen from every pixel. 

Random parameters can be generated during rendering (e.g. for jittering the location of the 

samples inside a pixel in order to reduce aliasing, or to generated a sample inside a primitive). 

However, if parallel processing is used, repeatability may become an issue if care is not taken. A 

possible solution is to generate pre-computed random grids that will be used during rendering as 

shared assets between processes. 

 

The full version of the application (D5.4) will have some computation steps ported to OpenCL in 

order to exploit this parallelism in an explicit way, relying on CL kernels for heterogeneous 

platform support. 

3.2.2.6 Memory Constraints 

The memory used by the 3D scene is obviously dependent on its complexity: the more primitives 
are defined, the more memory is required. 

A render buffer is used to store the computed pixels. The size of this buffer is directly linked to its 

resolution and must store RGB(A) values for each pixel. For example, 8-bit VGA image will 

require 640x480x3 bytes = 900Kb, whereas a full HD fp image will require a buffer of 

1920x1080x3x4 bytes = 23.7Mb. 

The voxel grid itself stores pointers to primitives. Its resolution can be parameterized: a lower 

resolution will demand less memory, providing a better traversal time but possibly more 

intersection computations and worst overall performances. The balance between the size of the 
voxel grid and the complexity of the 3D scene may be critical, and different per scene. 

No texture is used in the current version of the raytracer. 

3.2.2.7 Dependencies 

An optional module based on OpenGL is used for visualization of the scene, position of the 

camera, etc. However, this functionality is not required for the computation of the rendered image 

itself and can be removed via compilation options or code #define. Without this support, the 

application is self-dependent. 

 

The full version of the application (D5.4) will have some computation steps ported to OpenCL. 
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3.2.2.8 Targeted Performances 

The image rendered by raytracing should be produced as fast as possible. Real time may be a 

target for scenes with low complexity, or low resolution. However, such an ideal target may not be 

reached for more complex setup. Consequently, some form of hardware acceleration can be 

necessary to obtain a satisfying frame rate for scene with average complexity. 

3.2.2.9 Reconfigurability 

The raytracing application is highly reconfigurable, depending of the input that is processed to the 
way the rendering is performed. 

The workload is first dictated by the resolution of the rendered image. As at least one primary ray 

is casted per pixel (and potentially more for antialiasing, even reaching thousands in path tracing 

applications), the image size dictate the rendering complexity and the possible parallelization 

width. Image resolutions can vary from VGA (640x480) up to full HD (1920x1080) or more. 

Antialiasing is performed in casting more than one ray per pixel. As stated in the previous point, 

this parameter has a direct influence on the workload of the application. Reasonable values can 

range between 4 and 16 samples per pixels. 

A ray tracing application spends a lot of time in computing intersections between a ray and a 

geometric primitive. The nature of this primitive dictates the complexity of the intersection 

computation. A highly optimized solution will target a single type of primitive (e.g. triangles), 

with a possible hardware-accelerated support. However, the need for more complex surfaces (e.g. 

cone, sphere, polygons, or even high-order surfaces) demands a reconfiguration of the application 

in order to take into account these new primitives. High-order surfaces may even demand 

additional stages, e.g. tessellation. 

Intersections are expensive to compute, and their number should be reduced to the minimum. For 

that effect, acceleration structures must be used in order to describe the scene in a more efficient 

manner. Voxel grids or kd-trees are possible solutions. The choice of the nature of this structure 

may depend on the type of scene to render, and the possible hardware support. For example, the 

traversal of a voxel grid could be accelerated by a dedicated device. The resolution of the voxel 

grid itself could influence some form of reconfiguration, according to the scene complexity for 

example. Additionally, a static scene needs a single construction of the acceleration structure when 

the scene is first described, and could be done as a pre-process. However, a dynamic scene with 

transformable objects (animated position, size, etc.) needs a constant update of the corresponding 
acceleration structure. 

The color of a pixel is determined in following the path of a ray in the virtual 3D scene, after 

subsequent interactions with the intersected primitives. The depth of this path can be controlled by 

the user as a parameter to the application (in limiting it to 3 or 4 bounces for example), or 

computed analytically. Consequently, this choice has a direct consequence in the computation 
complexity of the rendering. 

The shading of the point of a primitive hit by a ray must take into account the direct illumination 

that it receives. This evaluation is done in casting shadow rays in the direction of the light sources. 

If one shadow ray intersects something before reaching the targeted light source, an occlusion is 

detected and the rendered point is potentially in shadow. In general, light sources have an area, 

and consequently several shadow rays must be cast to sample it correctly. Once again, the choice 

of the number of shadow ray can be influenced by some application parameters, with a direct 

consequence on the quality of the rendering and its computation time (from a single shadow ray to 

hundreds or more per intersection). 

In addition to the obstruction factor, the shading of an intersection demands the computation of a 

reflectance according to the material associated to the primitive. This computation can be very 
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simple but unrealistic (based on simple dot products), or can involve complex shading models, 

based on physical properties of real materials, themselves relying on additional ray casting for 

evaluation of reflection or diffusion, for example. The choice of the shading model depends on the 
scene to render, on the capabilities of the application and on desired performances. 

The size of the scene itself impacts the rendering time. Indeed, the more primitives compose the 

scene, the more intersections need to be computed. A correct acceleration structure tends to reduce 

the impact of the scene complexity, but the number of primitives has nevertheless an important 

influence on the rendering time. Typically, the number of primitives can range from 2 (e.g. test 
scene) to several millions. 

The final rendered image has generally a high-dynamic range, encoded in floating point, in order 

to capture the full spectrum of the light intensity, from very bright light sources to dark 

penumbras. However, the result needs generally to be displayed on a screen with a limited gamut, 

and some post-processing is necessary (e.g. tone mapping). The presence of this last stage, and the 

quality produced, can be freely parameterized by the application itself, and modified subsequently 

in function of the output device targeted. 

Finally, the level of parallelism that can be exploited also depends on the platform of execution. 

On a multi-core platform, the image can be decomposed in independent sub-regions, and each 

region is rendered independently by a single core. The scene data and the associated acceleration 

structure have to be shared between processes. On more dedicated platforms (or GPUs for 

example), each pixel can be processed independently by its own thread, reaching a very high level 
of parallelism. 
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4. Embedded domain 

4.1. Domain scope & requirements 

The term embedded system is used frequently nowadays to describe a wide variety of modern 

devices/applications. As a victim of its generality, there is not a precise definition available but a 

rather loose or subjective understanding of what actually can be characterized as an embedded 

system. A broad definition could be as simple as that
1
: embedded computer system is any device 

that includes a programmable computer but is not itself intended to be a general-purpose 

computer, or a little more detailed
2
: an embedded system is an application that contains at least 

one programmable computer (typically in the form of a microcontroller, a microprocessor or 

digital signal processor chip) and which is used by individuals who are, in the main, unaware that 

the system is computer-based.  

Following the above definitions, typical embedded systems include common domestic appliances 

(from clocks to fridges to televisions), portable devices, industrial control systems, cars, defense 

systems, telecommunications equipment and so on. Compared to more familiar computing 

systems, such as the personal computers (PCs), embedded systems are special purpose devices and 

are usually designed with certain requirements or restrictions that may not apply for other systems. 

For example, a medical device or an industrial control application may impose higher safety 
requirements than a typical electronic device. 

Key characteristics of embedded systems are: 

 Small scale systems – an embedded system is typically restricted both in resources and 

physical dimensions (there are however notable exceptions, e.g. in military applications) 

 Short runtimes to real-time systems – embedded applications typically involve real-time 

systems or systems that have to respond within tight time frames 

 Varied computation requirements – since embedded systems span from simple 

microcontroller-based electromechanical systems to high-performance highly complex 

ones, computational requirements vary by a large degree 

 Low memory requirements – embedded systems are not meant to be general-purpose 

systems and therefore are designed with minimum memory requirements (this is also 

typically associated to cost reduction and physical area minimization) 

 Fast interconnects – embedded systems typically employ fast and proprietary interconnects 

since they are closed systems that do not have to adhere to general-purpose interfaces or 

standards, as a way to minimize latencies and complexity. 

Since embedded systems are special purpose devices, apart from the programmable hardware they 

include (in the form of a generic microcontroller, microprocessor or DSP), they often use custom 

hardware, mainly for two reasons. The first one is related to the fact that they have to operate 

under strict restrictions and requirements which simply cannot be met by software. For example, 

in a cell phone, it is not easy to implement all the communication protocol complexity in software 

since it has to operate under certain space, energy and thermal constraints. Thus dedicated circuits 

are used to offload these computations. 

The second reason for using dedicated hardware is attributed to the fact that the designer of an 

embedded system has almost complete knowledge on how the device will be operated and 

                                                

1 Wayne Wolf, “Computers as Components: Principles of Embedded Computing System Design”, 2nd Edition, 
Morgan Kauffman Publications, 2008. 
2 Michael J Pont, “Patterns for Time-Triggered Embedded Systems”, TTE Systems, ACM Press Books, 2011. 
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furthermore the functionality of the device may be fixed. Since dedicated hardware can be very 

efficient in terms of performance and energy consumption, the aforementioned allow for systems 

that can be made cheaper and better performing. Continuing the previous example, the designer 

knows the communication protocol that will be used by the cell phone, as well as all the basic 

functionality that the phone has to offer and thus by using dedicated circuits he can meet energy 

and performance requirements easier and cheaper (e.g. he can use simpler components and smaller 

batteries). 

From the above, one has to focus on the following key aspects of embedded systems: they are 

closed systems (usually not meant to be user expandable or serviceable) and they are tightly 

designed to meet certain specifications with cost being a major concern. That means that during 

design, an embedded system can be tailor made to a specific structure suitable for a particular 

application. Thus components can be directly interconnected, since they do not have to adhere to 

general-purpose interfaces and topologies, minimizing latencies and complexity. On the other 

hand, as the application domain is strictly characterized, memory and other resources are kept to 

the bare minimum required by the application. Therefore embedded systems typically have access 

to fewer resources than their general-purpose desktop-class counterparts. 

The requirements of embedded systems can be summarized in the following list:  

 Operation under strict predefined specifications 

o Real-time systems 

o Reliable systems 

o Specific physical area, energy consumption and computational performance 

requirements that may precondition the use of high-performance multi-core 

processors and hardware accelerators (e.g. ASICs, FPGAs, GPUs)  

 Minimum component count 

o Low memory requirements (small memory sizes) 

o Reduced IC count and manufacturing complexity 

 Highly cost sensitive 

o Component costs 

o Energy consumption costs 

o Design reuse, product upgradability 

The major drawback of using dedicated hardware and interconnects is the lack of flexibility either 

during design or after the system has been deployed. The former restricts the production of rather 

generic systems that can be differentiated or used in other applications simply by software 

changes. The latter is also important since the functionality of the device may have to be altered 

after it has been delivered.  

From the above, it is understandable that for certain applications where there are strict 

performance and energy constraints that cannot be met by commodity or special purpose 

programmable processors, flexibility has to be sacrificed through the use of dedicated hardware. A 

solution that has been successfully presented for this problem is the use of configurable logic, 

primarily through the use of FPGA devices. FPGAs can provide performance (as well as energy 

consumption) close to the one offered by dedicated ASIC circuits, while they can be reconfigured 

after they have been deployed, thus they form a middle ground between ASICs and software, 
offering the best of both. 

An application field that has embraced the use of FPGAs is the network embedded systems one. 

Typically, network embedded systems require high levels of performance and commonly use 

dedicated hardware along with high-performance processor cores. The need to support a multitude 

(as well as evolving) communication protocols, to rapidly respond to critical changes and to 

deploy flexible systems so as to protect the investments of customers are among the key drivers of 
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adopting FPGA technology in those systems. In order to keep up for example with high data bit 

rate communications while supporting encrypted messages, modern routers and other network 

devices employ hardware implementations of the most popular cipher algorithms. As, however, 

those are susceptible to vulnerabilities, in order to keep those systems safe, changes have to be 

made as soon as those vulnerabilities are discovered and this is only feasible through the use of 
reconfigurable devices.  

The aforementioned reveal a possible weakness of using FPGA devices. More specifically, the 

multitude of functions that may have to be implemented in an FPGA can be overwhelming thus 

requiring either multiple devices or the use of the most expensive larger devices. On the other 

hand, while small changes may be required, a device has to be reconfigured in order to apply those 

changes. This results in (potentially) significant down-time and requires large storage resources 

for configuration bitstreams. To alleviate these problems, modern FPGAs have started offering 
partial reconfiguration options, which can be applied very effectively in those scenarios. 

A certain class of network embedded systems that can deeply benefit from the use of FPGA 

devices is Network Intrusion Detection Systems (NIDS). NIDS systems are becoming essential in 

modern networks as security is escalating to be one of the most important aspects. They typically 

operate under very high performance requirements, thus requiring the use of dedicated hardware, 

however they have to be constantly updated to detect newly discovered vulnerabilities and attack 

methods. That is the reason we consider it a prime candidate for FASTER. The application and its 
requirements will be presented in Section 4.2. 

A second application field that rapidly adopts FPGA technology, is the Image Analysis one. 

Machine vision systems are becoming widespread and they are used in multiple domains, such as 

surveillance, navigation, medical and control systems. A common requirement in these 

applications is the need to analyze in real-time (or almost real-time) large image data structures, 

thus the performance requirements are significant. Graphics Processing Units (GPUs) have often 

been used as accelerators for these systems, since they offer high performance and they are 

programmable, therefore they can adapt to different system requirements or incremental 

changes/updates of a certain system. However the use of GPUs presents certain restrictions. First, 

they are costly both in terms of actual component cost and in terms of increased second order 

costs (they require additional cooling components, additional memory and controllers, larger 

power supplies etc). Secondly, they typically require significant energy resources, which are 

prohibitive in small portable systems. Thus, the use of FPGAs is becoming attractive. In Section 

4.3, a particular application that we consider representative, key point detection and tracking, is 

presented. 

 

4.2. Sample application: Network Security and Intrusion Detection 

(CONTRIBUTORS: Synelixis) 

4.2.1. Application description 

Network intrusion detection systems (NIDS) are widely adopted as high-speed and always-on 

network access demand more sophisticated packet processing and increased network security. 

Instead of checking only the header of incoming packets (as for example firewalls typically do), 

NIDS also scan the payload to detect suspicious contents. The latter are described as signatures or 

patterns and intrusion signature databases are made available that include known attacks. These 

databases are regularly updated and an NIDS has to be able to provide a certain degree of 

flexibility so that it can incorporate the updated security information. 
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In the past, NIDS used mostly static patterns to scan packet payload. Recently, regular expressions 

have also been adopted as a more efficient way to described hazardous contents. As such modern 

rulesets are comprised of both static patterns and regular expressions (for example the popular 

Snort IDS system upon Synelixis NIDS is based, includes more than 2000 static patterns and more 

than 500 complex regular expressions).  

The general requirements of NIDS systems are (i) high processing throughput, (ii) low 

implementation cost (iii) flexibility in modifying and updating the content descriptions, and (iv) 

scalability as the number of the content descriptions increases. The performance requirements are 

fundamental to the correct functioning of an NIDS system, as if it cannot meet them, then the 

system itself is susceptible to specific types of attacks (overload and algorithmic attacks). Thus 

hardware-based NIDS systems are popular since they can provide the performance required.  

NIDS systems implemented on reconfigurable hardware have the potential to marry the high 

performance of hardware-based NIDS systems with the flexibility of software solutions. Specific 

rules can be mapped to custom logic for maximum performance and changes (updates) to rules 

can be achieved by reconfiguring the device. Depending on the nature of the update (incremental 

versus more extensive ones), different reconfiguration approaches can be used: if a new rule is 

added in the system (the usual case), micro-reconfiguration can dedicate free resources to this new 

rule. If however, a major restructuring of the rules is performed (either as initial setup, a major 

upgrade, or to respond to new requirements of the organization) then partial or even full 

reconfiguration is needed. 

4.2.2. Requirements 

4.2.2.1 Computation Complexity 

An analysis of the complexity of typical modern NIDS systems, such as the widely popular Snort
3
 

(upon which Synelixis NIDS system is based), reveals that by far the most complex task is the 

string matching process
4
 and this is exactly the process that is most important to map on 

reconfigurable hardware. Recent rulesets of the Snort IDS express rules in both static patterns and 

regular expressions. The latter provide a more efficient way to represent hazardous packet payload 

contents and as a result their usage is becoming rapidly more widespread. 

For static patterns, some form of the Boyer-Moore
5
 algorithm is employed. For regular 

expressions pattern matching Synelixis uses a solution based on nondeterministic finite automata 

(NFA)
6
. Both computations have linear complexity regarding the length of the text string to 

examine and the length of the expression to be tested.  

4.2.2.2 Type of Processing 

Computation is mostly based on bitwise comparisons and decision tree traversals. Concerning an 

implementation in reconfigurable hardware, rather simple digital circuits are required to 

implement the related processes, mostly comprised of comparators, shifters and FSM logic. It 

should be noted however, that the way the algorithms work puts pressure in the memory 

subsystem and require the use of complex memory structures, such as CAMs. 

                                                
3 http://www.snort.org 

4
 M. Fisk and G. Varghese, “An Analysis of Fast String Matching Applied to Content-based Forwarding and Intrusion Detection,” 

in Techical Report CS2001-0670, University of California - San Diego, 2002 
5
 R. S. Boyer and J. S. Moore, “A fast string searching algorithm,” Communications of the ACM, vol. 20, no. 10, pp. 762–772, Oct. 

1977 
6 Joao Bispo; Ioannis Sourdis; Joao M.P.Cardoso; Stamatis Vassiliadis, "Regular expression matching for reconfigurable packet 

inspection," Field Programmable Technology, 2006. FPT 2006. IEEE International Conference on , vol., no., pp.119-126, Dec. 
2006 
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4.2.2.3 Control Flow 

Deterministic Finite Automata (DFAs) are typically used as control flow mechanisms for software 

implementations of the string matching processes, since sequential code is more suitable of 

keeping track of single active states. For a hardware implementation though, a DFA-based control 

structure can produce inefficient designs in terms of area (logic and memory). A worst case study
7
 

shows that a single regular expression of length n can be expressed as a DFA of O(Σ
n
) states.  

Synelixis approach is based on Nondeterministic Finite Automata (NFAs). Compared with a DFA, 

an NFA representation for the aforementioned case has only O(n) states. The drawback is that an 

NFA has multiple active states, however since hardware is inherently concurrent, it is relatively 

easy to concurrently track those states. 

4.2.2.4 Data Flow 

NIDS is a streaming application. Data flow is linear as network packets pass through the NIDS 

system from a source to an end server. No data storage is performed nor is there any loop-back 
feed. 

4.2.2.5 Parallelism 

Parallelism can be exploited in two ways for an NIDS system. Different network packets can be 

processed individually; therefore if there are multiple feeds of packets (e.g. a central point with 

multiple network links) these can be processed simultaneously. On the other hand, string matching 

on a particular payload can be executed in parallel for all applicable rules. 

4.2.2.6 Memory Constraints 

The memory requirements of Synelixis NIDS system are directly related to the number of static 

patterns, as well as the static strings in the regular expressions included in the ruleset that has to be 

examined. Synelixis implementation requires a separate module for each regular expression. Using 

(partial or full) reconfiguration to update the ruleset means that each regular expression module 

can be hardwired to a specific circuit and no memory has to be dedicated to store control 
information in order to compute current or future regular expressions.  

4.2.2.7 Targeted Performances 

Performance is critical for an NIDS system. On one hand, the communication links offer higher 

and higher bandwidths putting pressure on the NIDS system as more packets per second have to 

be processed. On the other hand, evolving and more sophisticated attacks increase continuously 

the ruleset of an NIDS system, thus requiring more processing per packet.  

It should be noted that the performance of an NIDS system is also directly related to the level of 

security it can offer. There are specific types of attacks, named overload attacks8, in which an 

attacker overloads an intrusion detection system by flooding it with innocuous packets until the 

system starts dropping packets. There is then a high probability that the detection system will not 

catch an attack that is interjected in this stream of packets.  

To have strong assurance that a detection system is not subject to such attacks, the system must be 

able to support full utilization of the network that it is monitoring. As a result, the higher the 

performance (as measured in terms of throughput) that the NIDS system can offer, the greater the 
appeal of the solution to a broader market. 

                                                
7
 J. E. Hopcroft and J. D. Ullman, Introduction to Automata Theory, Languages and Computation. Reading, Mass.: 2nd Ed., 

Addison-Wesley, 2001 
8 Vern Paxson, “Bro: A system for detecting network intruders in real-time,” Computer Networks, vol. 31, no. 23-24, pp. 2435–
2463, Dec. 1999 
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4.2.2.8 Reconfigurability 

An NIDS system has to be updated in a number of different ways throughout its operation: 

 Small incremental updates may be required to add, change or expand certain IP addresses 

or address ranges that appear in detection rules 

 New static pattern rules may have to added to the static ruleset or changes to the current 

patterns included in the ruleset may have to applied 

 Updates in the regular expressions to cover more cases or correct mishandling of certain 

detection rules 

 New regular expressions may have to added 

 Overall updates to the system may have to be performed in case of new policies or large-

scale update to the operation of the NIDS system. 

 

From the above, micro-reconfiguration methods appeal to the small incremental updates, as these 

appear to be the most frequent and require the smallest changes. This way, the system operation is 

practically not disrupted at all, while changes are applied almost instantly. Region-based 

reconfiguration seems more attractive for updates that require more significant circuit-level 

changes, such as significant updates or additions to the regular expression that are used to detect 

specific classes of patterns. Lastly, static partial or full reconfiguration may be required for 
system-level changes (as a result of a new policy for example).   

 

4.3. Sample application: Image Analysis 

(CONTRIBUTORS: ST) 

4.3.1. Application description 

STM is developing a demonstrator in the domain of image analysis for keypoint detection and 

tracking in order to address another promising domain, Augmented Reality. The detection of the 

feature points is done by the FAST (Features from Accelerated Segment Test) algorithm. The 
tracking itself is performed by PKLT (Pyramidal Kanada Lucas Tomasi). 

4.3.2. Requirements 

4.3.2.1 Computation Complexity 

The corner detection step (FAST) needs to perform a high number of comparisons between pixel 

luminances inside a single image. The resulting features are passed to PKLT for tracking. 

The tracking step (PKLT) is much more compute intensive. Filtered images need to be produced 

from the original frame, locale derivatives and gradient matrices must be compute per feature 

location. An iterative process is performed in order to compute the optical flow, based on a 
cascade of image at different level of details. 

4.3.2.2 Type of Processing 

The Image Analysis pipeline takes a video frame in input, identifies unique features in the image 

and track their locations between successive frames. This complex task is performed by two main 

stages implementing a corner detection algorithm (FAST) and a corner tracking algorithm 

(PKLT). 
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In the front-end, FAST processes each pixel of an input luminance image (single channel) for 

identifying potential corners, in comparing the luminance value of the pixel with its surrounding 

neighbors (located on a rasterized circle centered on the processed pixel). If a pixel is identified as 

possible corner, its associated score is computed according to the same neighborhood. This score 

represents its qualities as good corner compared to other candidates immediately surrounding it. 

Finally, a non-maximum suppression step occurs over all the corner candidates, suppressing 

potential corners adjoining another one with a better score. The final result consists in a list of 
corners, or features, which has to be tracked during the video sequence. 

 

The back-end of the pipeline consists in the feature tracker, implemented by PKLT. The problem 

to solve here is to find the position of a corner in the current frame, knowing its position in the 

previous one. One solution is to compare a window in the current frame, to a window centered on 

the corner in the previous one. The translation that minimizes the difference between these two 
windows defines the optical flow, solution of the tracking phase. 

The robustness and accuracy of this process depends on the size of the window considered. A 

large window offers a robust solution (for large movement for example), at the cost of precision. 

A small window increases the accuracy of the tracking, but may miss some correspondences. 

Consequently, a pyramid of images formed from the filtering of the full size frame at different 
resolution, offers a solution to this dilemma. 

Hence, PKLT consists in producing the filtered cascade of input images, computing a spatial 

gradient matrix based on local derivatives around the corner to track at each resolution, and to 

perform an iterative Lucas-Kanade step for computing the local optical flow using the matrix 

previously computed. The final optical flow is the accumulation of the local optical flows at all the 
detail levels. 

4.3.2.3 Control Flow 

FAST consists in different level of loops, first across all the pixels of an input image, then across 

all the potential detected features, then again with data decimation. 

PKLT loops across every feature detected by FAST. Two inner loops are processing these 

features, one covering the different level of details, while the last one covers each step of the 

iterative Kanade-Lucas processing for the current level of details. For each step, loops are used to 
compute gradient matrices and mismatch vectors over a given pixel window. 

4.3.2.4 Data Flow 

A stream of video frames is fed into FAST in order to detect features in these frames. 

 

 

Figure 4 – FAST pipeline 

 

A stream of feature list is sent to PKLT for tracking. A stream of optical flows is produced by this 

tracking stage. 
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Figure 5 – PKLT pipeline 

4.3.2.5 Parallelism 

There are different levels of parallelism inside this pipeline. 

 

The first level lies in the FAST front-end stage. Each pixel has to be compared to its neighbors for 

potentially being qualified as corner. As a consequence, this task can be performed in parallel for 

each pixel, independently. The same observation can be made for the score computation, 

following a similar process. However, the number of scores to compute is about two degrees of 

magnitude lower than the number of pixel to process (e.g. a VGA image is composed of 640x480 

= 307200 pixels to process, with potentially ~1000 corners depending on the nature of the image 
itself). 

 

The second level of parallelism lies in the PKLT back-end stage. 

A cascade of images, at different level of details, has to be generated for the frame under process. 

A given level of details is computed according to the previous one and does not offer much 

parallelism. However, each pixel of a given level is produced by the filtering of the pixel of the 

previous level. This filtering process can be performed in parallel for each pixel, independently 
from its neighbor. 

The gradient matrices and optical flows can be computed in parallel for each featured tracked by 

the algorithm. 

4.3.2.6 Memory Constraints 

Video frames are the most demanding in term of memory. FAST is using the luminance of a YUV 
input frame. PKLT is using the same frame, at different level of details (e.g. 4). For example, 
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a VGA frame will demand 640x480 = 300Kb for the top level of details, or 400Kb for the 
complete pyramid. 

4.3.2.7 Dependencies 

The current version does not rely on any dependencies. Final release may be using OpenCL for 

explicit parallelization. 

4.3.2.8 Targeted Performances 

The performance targeted is real-time processing on an embedded system, for at least VGA 
resolution. 

4.3.2.9 Reconfigurability 

Some features of the Imaging Pipeline can be reconfigured. 

The most obvious parameterization lies in the resolution of the input video stream. At minimum, a 

single channel VGA stream should be supported. With the availability of better and cheaper 
cameras, and increasing compute power, this resolution will increase certainly. 

The frame rate of the input stream has also a direct impact on the performance of the application, 

ranging from 15Hz to 30Hz and above. 

The FAST algorithm detects corners in comparing the intensity of pixels surrounding the 

evaluated point. The required number of consecutive pixels lower or above a given threshold has 

an influence on the number of corners, and their quality. Typically, a minimum of 9 consecutive 

pixels over a neighborhood of 16 is considered satisfying, but this limit can be increased in order 

to reach better results. This same observation applies to the choice of the threshold themselves, 
both in the corner detection and in the score phases. 

During tracking, the PKLT algorithm works on windows of pixels (e.g. 9x9). The size of this 

window has a direct impact on the precision of the tracking, but also on its robustness. 

Consequently, depending on the application and the resolution of the input, different window size 

may be considered. 

PKLT relies on different level of details of the input frame. For low resolution images (e.g. VGA), 

4 levels of details is acceptable. However, with the increasing camera resolutions, the number of 

levels will also increase in order to keep a precise tracking. 

Finally, the accuracy of the KL step performed by PKLT is controlled through an accuracy 

threshold, defined as an application parameter. The modification of this threshold has a direct 

impact on the number of KL iterations and consequently on the complexity of the computation 
and the final accuracy of the tracking. 
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5. Conclusion 
Three application domains are addressed by FASTER, from HPC to desktop applications and 

embedded systems. These comprise a wide range of very different requirements, from system 

point of view (power consumption, available computational capabilities, memory, bandwidth, etc.) 

to application perspective (parallelization, execution times, data volume, computation complexity, 

etc.) and can benefit from different methods of reconfiguration in various ways.  

As a representative of the HPC domain, Reverse Time Migration can use micro-reconfiguration to 

handle variations in domain size or in the number of timesteps for example. Partial region-based 

reconfiguration could be used to accommodate the change from imaging to propagation 

computation, while full reconfiguration may be necessary only when the physical model or other 

less frequent changes are necessary.  

Ray-tracing is a demanding desktop/workstation class application, which may employ different 

reconfiguration methods to achieve the desire performances and flexibility. Different levels of 

reconfiguration can handle the various adaptable aspects of the application: from modification of 

the parameterization, such as secondary ray depth or pixel sampling, to more important 

reconfiguration of the type of supported geometric primitives, to even the global acceleration 

structure or the shading models used by the rendering process itself. It may even be beneficial to 

support reconfigurable accuracy (precision) of the intersection computations. 

From the embedded domain, a NIDS system implemented on FPGA, can use micro-

reconfiguration in order to accommodate frequent small changes to the detection rules (usually 

associated with IP addresses), while for larger changes to the ruleset (such as new regular 

expressions) region-based reconfiguration is an optimal solution. Full reconfiguration may be 

employed in cases where significant changes to the operation of the NIDS system are requires, as 

for example the application of a new system policy. Similarly, Image Analysis, another 

representative application of the embedded domain, may profit of reconfigurability in order to 

efficiently handle variations in video data input or different sizes of window used during feature 

detection or tracking, etc. 

These requirements will have to be factored in order to define a unique and suitable design flow, 
as described in the Deliverable D1.2 “Requirements of FASTER models, methods and tools”. 


