
Aspect Driven Compilation for
Dataflow Designs

Paul Grigoraş∗, Xinyu Niu∗, Jose G. F. Coutinho∗, Wayne Luk∗, Jacob Bower† and Oliver Pell†

∗ Department of Computing, Imperial College London, 180 Queen’s Gate, London SW7 2AZ, UK

†Maxeler Technologies Ltd, 1 Down Place, London W6 9JH, UK

Email: {paul.grigoras09, niu.xinyu10, gabriel.figueiredo, w.luk}@imperial.ac.uk, {jacob, oliver}@maxeler.com

Abstract—This paper proposes a novel hardware compilation
approach targeting dataflow designs. This approach is based on
aspect-oriented programming to decouple design development
from design optimisation, thus improving portability and de-
veloper productivity while enabling automated exploration of
design trade-offs to enhance performance. We introduce FAST,
a language for specifying dataflow designs that supports our
approach. Optimisation strategies for the generated designs are
specified in FAST, making use of facilities in the domain-specific
aspect-oriented language, LARA. Our approach is demonstrated
by implementing various seismic imaging designs for Reverse-
Time Migration (RTM), which have performance comparable
to state-of-the-art FPGA implementations while being produced
with improved developer productivity.

I. INTRODUCTION

Existing work shows that dataflow machines emulated on

FPGAs achieve performance gains of up to several orders of

magnitude compared to traditional control based architectures

[1], [2]. By eliminating the fetch-decode-execute cycle of

von Neumann architectures [3], dataflow designs require less

area for caching and control which increases performance

and decreases power consumption. Due to its regularity, a

dataflow design can be statically scheduled into a deep hazard-

free pipeline through which data are streamed, achieving ideal

throughput rates of one result per clock cycle.

The stream based execution model is well suited for

implementing high throughput applications that operate on large

amounts of uniform data streams. However, dataflow languages

are not commonly used and imperative languages such as Java,

C and C++ are popular [4]. The following challenges should

be overcome to facilitate the adoption of dataflow designs:

1) Specifying dataflow designs, in an intuitive, well under-

stood language that is concise, facilitates the translation

of existing designs, and is sufficiently expressive to

support the requirements of modern high-performance

applications.

2) Specifying optimisation strategies, decoupled from the

application code in a manner that makes the specification

easy to reuse and to customise, and is comprehensive

enough to allow capturing of optimisations at various

levels: algorithmic transformations of the original appli-

cation that expose parallelism or improve communication

between CPU and accelerator, design-level transfor-
mations that enable exploration of platform specific

optimisations and productivity related transformations
that improve developer productivity.

3) Systematic design space exploration of dataflow designs

driven by these parameterizable optimisation strategies,

that increase developer productivity and allow exploration

of design level trade-offs.

4) Applying these design techniques to create and optimise

high-performance applications.

We propose a methodology for addressing these challenges

based on the following contributions:

1) We introduce FAST, a dataflow language based on C99

syntax that can be used to create high-performance

designs. We implement a compiler that translates designs

in FAST to MaxCompiler [5] designs which are then

compiled and executed on a Maxeler MaxWorkstation

containing a MAX3 DFE with a Virtex 6 FPGA chip

and 24GB of DRAM.

2) We present novel aspects for specifying optimisation

strategies at the system level, the implementation level,

the exploration level and development level. We imple-

ment these aspects using LARA [6], an aspect oriented

language for embedded reconfigurable systems.

3) We propose an automated method for design space

exploration of FAST dataflow designs, driven by the

aspect definitions.

4) We evaluate our approach by implementing a high-

performance design for an application based on the

Reverse Time Migration technique for seismic imaging.

II. DESIGN FLOW

We propose a novel design flow for aspect-driven compilation

of dataflow designs to meet the following requirements and

design goals, addressing key areas in developing hardware

acceleration solutions:

1) Performance: specify high-performance dataflow de-

signs, that achieve significant speedup over sequentially

executed implementations; exploit the reconfiguration

capability of FPGA devices to improve performance and

efficiency;

978-1-4799-0493-8/13/$31.00 © 2013 IEEE ASAP 201318

2) Portability: improve portability of dataflow designs,

to allow reuse of optimisation strategies on various

platforms;

3) Integration: simplify translation of existing applications

to high-performance dataflow designs to facilitate the

integration of the proposed design flow with existing

(predominantly imperative) application code;

4) Productivity: improve developer productivity by provid-

ing high-level means of specifying dataflow designs and

controlling compilation strategies that reduce compilation

time and generating boilerplate code automatically.

To meet these requirements we propose the following

approach. Firstly, we introduce FAST (described in Section III),

a novel language for specifying dataflow designs. We specify

the accelerated portion of the original applications using FAST

dataflow kernels. By maintaining compatibility with C99 syntax

we improve developer productivity by providing a familiar

language and introduce the possibility of combining hardware

and software specifications. Secondly, by using an aspect

driven compilation flow we decouple optimisation from design

development, improving design portability, and we automate

the generation of code and design space exploration improving

productivity. Finally, systematic design space exploration is

used to identify maximum performance configurations, subject

to platform specific constraints.

The proposed design flow is illustrated in Fig. 1 and follows

the steps:

1) a C application containing an embedded high-level

dataflow design is developed from the original source

application. The design is implemented using FAST as

described in Section III;

2) the dataflow design is transformed by the aspects in the

repository to generate new designs (e.g. with multiple

word-length configurations). The classes of aspects used

with our approach are introduced in Section IV;

3) the generated configurations are compiled using a back-

end compilation toolchain (currently MaxCompiler) to

dataflow designs implemented on FPGAs;

4) the feedback from the compilation process is used to

drive the design space exploration, repeating the weaving

and compilation process until user specified requirements

are met.

Compared to existing work described in [7] and [8] our

approach emphasises and provides more freedom in the

exploration of design level optimisation (such as word length

optimisations and mapping of arithmetic blocks to DSPs) by

using a combination of implementation aspects (shown in

Fig. 1) and FAST optimisation options.

Additionally, our approach targets a dataflow architecture as

opposed to the von Neumann architecture proposed in related

work, which typically includes a General-Purpose Processor

(GPP) and a custom accelerator. We consider additional

optimisations to achieve performance improvements as a result

of a systematic design space exploration process.

igns,

rious

tions

e the

sting

ovid-

s and

ation

wing

n III),

ecify

FAST

yntax

miliar

ware

spect

esign

mate

oving

��������	
��������������������������������
������

�������	��
���
�

����������

 ��!�"�#��

�������$%�&&�'�����
(�!�������

������������
� �����������
����
�

�������������

)�*������!�����

�����
�����

+������

��	#�������

(�!�������	+�!��,�����

�
���!���-

�.
����

��	#����������*/����
�0�1��	#���!�

����
�*/

Fig. 1. Proposed approach for aspect-driven compilation of dataflow designs.

III. THE FAST LANGUAGE

FAST (Facile Aspect-driven Source Transformation) is a

novel language for specifying dataflow designs that are used as

a starting point for the design flow proposed in Section II. In

particular, we use C syntax to capture dataflow computations,

and, instead of heavily relying on API libraries to specify

the design (as in MaxCompiler [5] or Streams-C [9]), we use

aspects to implement the transformations required for the actual

implementation.

FAST provides the following features that are required by

the proposed flow:

• Imperative specification of dataflow designs. C99 syntax

is enforced by the FAST compiler which is based on

the ROSE Framework [10]. The familiar syntax makes

the language easy to adopt thus facilitating translation of

existing implementations to dataflow designs.

• Good integration with existing source level translation
and weaving tools. Simple syntax allows the language

to interact well with existing compilers or source to

source translation frameworks, allowing source level

optimisations to be applied through different tools.

• Combined hardware/software design. Specifications of

dataflow kernels and CPU run-time software can be

mixed. The example shown in Fig. 2 can be compiled

with the GCC toolchain, but when using the FAST

compiler, the pragma indicates the link between the

software and hardware, which results in an accelerated

hardware/software solution.

• Support for data path and control path generation. FAST

allows specifying both data and control operations that

are automatically mapped to stream multiplexers.

19

FAST is used to express the simplest form of a dataflow

design while optimisations and other transformations are

encapsulated in aspects which are developed separately and

applied through aspect weaving. This results in a flexible

approach for generating and exploring the space of efficient

dataflow designs.

Designs in FAST are compiled to MaxCompiler designs

composed of inter-connected functional kernels. Communica-

tion between kernels is asynchronous, so they can operate

independently, and compute only when all active inputs have

available data.

Table I summarises the features of FAST and Fig. 2 shows

an example dataflow kernel used to value European options.

Kernels are defined as regular C functions with inputs clearly

defined as arguments in the function signature. Streams are

represented as regular C99-style pointers. Normal array notation

can be used to generate either previous or future values or

dereference the stream to obtain the current stream value.

Negative indices are allowed for accessing previous stream

values and supported offset expressions are linear expressions

comprised of constants or variables (either loop induction

variables, or normal variables but for which a compile time

range of values is specified, as a requirement for generating

efficient hardware). Constructs such as loops are supported as

long as their bounds are known at compilation time and are

used to parametrise dataflow designs.

TABLE I
SUMMARY OF THE MAIN FEATURES OF THE FAST LANGUAGE.

Feature Description Method (see Fig. 2)

Input/Output
Declared in function header C99 (line 1)

in(),out() FAST API (lines 2,11)

Control
Ternary op., if statement C99 (line 11)

Stream mux (mux()) FAST API

Computation
+, *, /, - C99 (line 8)

log, exp, sqrt, sin etc. #include <math.h>

Streams
Declared as pointers C99 (line 1)

Accessed with array index C99 (line 8)

Optimisation C pragmas C99 (line 7)

Parameterization Constants, variables C99

Hardware
Mapping

C pragmas C99 (line 17)

The FAST API provides higher-level constructs such as

I/O functions (in(), out()), counters (Fig. 2, Lines 4–

5) and functions to multiplex streams (mux()). C function

calls are mapped to dataflow kernels via pragmas (Line 17)

which provides the flexibility of selecting a particular dataflow

configuration based on run-time conditions. Support for run-

time reconfiguration is included but will be described in a

future publication due to lack of space.

1 void Price_FPGA(float* p, float c_0_0_0,
float c_p_0_0, float c_n_0_0, int n1,
int ORDER) {

2 in(p);
3
4 float* i4 = count(1000, 1);
5 float* i1 = countChain(n1, 1, i4);
6
7 #pragma FAST DSPBalance:full
8 int result = p[0] * c_0_0_0 + p[1] *

c_p_0_0 + p[-1] * c_n_0_0;
9

10 int up =(i1 >= ORDER) && (i1 < n1 - ORDER);
11 out(up ? result : p);
12 }
13
14 void Price_CPU(...) {...}
15
16 int main() {
17 #pragma FAST hw:Price_FPGA
18 Price_CPU(...);
19 }

Fig. 2. FAST dataflow kernel for European Options pricing.

IV. ASPECTS

Aspects are standalone modules that capture functional

cross-cutting concerns that are decoupled from the primary

function of a program. AspectJ [11], a widely used extension

for Aspect-Oriented Programming (AOP) in Java, captures

program execution points (such as method calls) at run-time

to allow new code to be executed before, after or in place

of these execution points through a process called weaving.

The main motivation behind AspectJ in particular, and AOP in

general, is to solve the modularisation problem when dealing

with multiple cross-cutting functional concerns.

The LARA aspect-oriented design-flow [6], on the other

hand, performs the weaving process at compile-time to satisfy

non-functional concerns, such as to improve performance on

a particular hardware platform. For this purpose, the LARA

weaving process manipulates and transforms the application

sources. These new generated sources (woven code) incorporate

functional elements of the original sources, and non-functional

concerns captured by LARA aspects.

In this paper, we combine the LARA aspect design-flow

with FAST dataflow designs. In particular, FAST uses standard

C99 syntax to capture dataflow computations while aspects

specify decoupled optimisation and transformation strategies

that operate on FAST descriptions. This approach makes the

functionality of the application easier to understand, more

maintainable and portable since it is no longer obscured by

various structural or algorithmic transformations, as well as

platform specific optimisations. In addition, strategies coded in

LARA can be re-applied automatically in different applications,

thus improving developer productivity.

We report four types of aspects (Table II) used with designs

in FAST:

System Aspects. System aspects capture transformation or

optimisation strategies that affect the whole application such as

20

those concerning hardware/software partitioning, monitorisation

and run-time reconfiguration capabilities. The goal of hardware/

software partitioning is to improve the overall execution time by

identifying parts of the code to be offloaded to hardware (Sec-

tion IV-A). Monitorisation aspects instrument the application

code to extract run-time behaviour, and uncover opportunities

for optimisation (Section IV-B). Run-time reconfiguration can

be used to remove idle functions from the accelerator at specific

points in time, so that additional resources can be dedicated

to functions that are active [12].

Implementation Aspects. Implementation aspects focus on

low level design optimisations that can be applied to designs

in FAST to improve timing or resource usage. For instance,

operator optimisation aspects (Section IV-C) can be used to

map operators in the program to dedicated hardware resources.

Word-length aspects specify the numerical representation of

variables and expressions in the design.

Exploration Aspects. Exploration aspects deal with strategies

that generate multiple designs to find an optimal implementation

based on user requirements. Exploration aspects can act on

any level of the design flow (C code, C and FAST, or FAST

functions). They enable systematic exploration of trade-offs and

optimisation opportunities. Examples of exploration aspects

include iterative aspects (Section IV-D) which generate a

sequence of solutions until a termination criterion is satisfied,

and metaheuristic-based aspects to find optimal solutions in a

very large design space.

Development Aspects. Development aspects capture transfor-

mations that have an impact on the development process such as

debugging (Section IV-E), and, potentially, simulating kernels

or improving compilation speed. Separating these concerns

makes the original code easier to maintain and enables the au-

tomatic application of these transformations to a wide range of

designs, improving developer productivity. Simulation aspects

could be applied to dataflow designs to generate equivalent

state-based C code thus enabling pure software simulation.

Compilation aspects, on the other hand, could be applied during

the development process to create versions of the dataflow

design that compile faster by reducing the operating frequency,

removing debug blocks or applying design-level optimisations

that can resolve timing constraints. Naturally, reducing the

compilation time would increase developer productivity.

A. Hardware/software partitioning

FAST functions describing dataflow computations can be

embedded within the C application but cannot be invoked

directly by software C functions. Instead, a FAST pragma

must be used on top of software function definitions or

C calls to indicate an alternate hardware implementation.

For instance, the code shown in Fig. 3 indicates that the

software implementation of f() can be mapped to the dataflow

implementation described in fast_f(). This way, our design-

flow can automatically switch from a pure software application

to a software/hardware design.

TABLE II
TYPES OF ASPECTS USED IN FAST

Aspect Type Aspect Name Description

system

• hw/sw partitioning capture mapping between

• monitorisation application modules and

• reconfiguration GPP/FPGA accelerators

implementation
• operator optimisation capture low-level hardware

• word-length spec optimisations

exploration
• iterative

generate multiple implemen-

• metaheuristic
tations based on design

space exploration strategies

development

• simulation
improve developer

• debugging
productivity

• compilation

1 void fast_f() {/* dataflow implementation */}
2
3 void f() {/* software implementation */}
4
5 #pragma FAST hw:fast_f
6 f();

Fig. 3. Mapping of C function calls to dataflow kernels using FAST pragmas.

Hence, a hardware/software partitioning strategy can be

performed in five steps:

1) detecting hotspots in the program;

2) detecting code patterns from hotspots that are suited for

dataflow computation and acceleration;

3) performing the outlining transformation so that each

candidate for acceleration is enclosed in a function f;

4) deriving a dataflow version fast_f from state-based f;

5) placing a FAST pragma on top of each function call to f
and associate it to the corresponding fast_f function.

Each of these steps can be described as a separate LARA

aspect and combined to form a hardware/software partitioning

strategy.

B. Monitorisation Aspect

To find potential hotspots in the application, for instance

to perform hardware/software partitioning, we can use the

aspect in Fig. 4. With this aspect, the weaver can automatically

instrument any C application to self-monitor its innermost

loops at run-time, as they are natural candidates for dataflow-

based acceleration. In particular, this monitorization aspect

can compute the following information for every innermost

loop: (a) the average number of times it has been executed,

(b) the average number of iterations, (c) the loop average

time, and (d) the loop iteration average time. For this purpose,

we use a monitoring API composed of 4 functions to mark

the beginning and end of the loop (monitor_instanceI
and monitor_instanceE respectively), and to mark the

beginning and end of an iteration (monitor_iterI and

monitor_iterE respectively). These monitoring functions

21

keep an account of the frequency of execution and the time to

complete the whole loop and a single iteration.

1 aspectdef LoopMonitor
2 select function.loop{is_innermost} end
3 apply
4 $loop.insert before
5 %{monitor_instanceI("[[$loop.key]]");}%;
6 $loop.insert after
7 %{monitor_instanceE("[[$loop.key]]");}%;
8 end
9

10 select function.loop{is_innermost}.entry end
11 apply $begin.insert after
12 %{monitor_iterI("[[$loop.key]]");}%;
13 end
14 select function.loop{is_innermost}.exit end
15 apply $begin.insert before
16 %{monitor_iterE("[[$loop.key]]");}%;
17 end
18 end

Fig. 4. Aspect that instruments the application to monitor loop activity. The
information generated can be used to identify hotspots.

The aspect code is as follows: line 2 selects all loops in

the application that are innermost (loops with no other loops

enclosed); lines 3–8 place an instance monitor call before

and after each selected loop; lines 10–13 select all entry

points inside the loop and insert a monitoring call to mark

the beginning of each iteration; lines 14–17 place an instance

monitor call to mark the end of each iteration. The following

table shows an example of applying the aspect from Fig. 4 on

a C-style function containing a loop:

original code woven code
void f() { void f() {

monitor_instanceI("f:1");
while (i < N) { while (i < N) {

monitor_iterI("f:1");
i++; i++;

monitor_iterE("f:1");
} }

monitor_instanceE("f:1");
} }

Each monitoring call in the woven code receives as a parameter

the loop key, which uniquely identifies the loop within the

application. The loop key is generated by concatenating the

function name with the hierarchical position of the loop within

the abstract syntax tree. For instance, f:2:1 corresponds to the

1st loop inside the 2nd outermost loop of function f. The

hotspots can be identified by an aspect (not shown) that takes

the profiling information generated by the monitorization API

calls, and that uses an heuristic to compute the most profitable

computations to be offloaded to hardware.

C. Operator Optimisation Aspect

To provide architectural details to FAST designs, such as

mapping operators to DSP blocks, we can use the FAST pragma

shown in Fig. 5 at the top of a statement (including code

blocks). The balancing parameter corresponds to the degree of

utilisation of DSP blocks in a statement.

1 #pragma FAST balanceDSP:balanced
2 {
3 x = x * y;
4 x++;
5 }

Fig. 5. The FAST balancing pragma provides fine grained control over the
mapping of computation to either DSPs or LUT/FF pairs.

The aspect shown in Fig. 6 is the strategy for balancing DSP

blocks in every statement of an application. Instead of adding

the above pragma manually, we provide a set of rules (lines 3–

4) that define where to place the balanceDSP pragma. In this

example, we established the rule that full DSP block utilisation

is applied to any statement that has 5 or more multipliers

and adders, balanced if 3 or more multipliers, and no DSP

utilisation otherwise.

1 aspectdef DspBalancing
2 var op_granularity =
3 [{DspBalance:’full’,MultiplyOp: 5,AddOp: 5 },
4 {DspBalance:’balanced’,MultiplyOp:3}];
5
6 select function.statement end
7 apply
8 for (var i in op_granularity) {
9 var gprofile = op_granularity[i];

10 var match = true;
11 for (var k in gprofile) {
12 if (k != ’DspBalance’) {
13 match &= ($statement.num_construct(k)
14 >= gprofile[k]);}}
15 if (match) {
16 var pragma = ’#pragma FAST balanceDSP:’
17 + gprofile.DspFactor;
18 $statement.insert before "[[pragma]]";
19 break;}}
20 end
21 end

Fig. 6. Aspect for exploring mapping of computation to DSP blocks.

D. Iterative Aspect

Using LARA we can implement and combine these aspects

to enable systematic design space exploration of all the

optimisation options exposed by the FAST backend resulting

in the generation of a large number of designs. The feedback-

directed compilation process of LARA can be used to capture

and extract feedback from the backend reports pertaining to

resource usage or timing information and automatically adjust

the compilation process.

An example of a LARA aspect for design space exploration

is shown in Fig. 7. It highlights the feedback capabilities

of the design flow: the aspect will generate and build the

FAST designs until the resource usage passes a specified

LUT threshold, and at each step increasing a particular design

attribute, such as exponent, mantissa or the parallelism of the

design (by replicating the computational pipeline).

22

1 aspectdef DesignExploration
2 input
3 attribute,
4 start, step,
5 lut_threshold,
6 config
7 end
8 config[attribute] = start;
9 var i = 0;

10 do {
11 var designName = genName(config);
12 call genFAST(designName, config);
13 buildFAST(designName);
14 config[attribute] += step; i++;
15 } while (@hw[designName].lut < lut_threshold
16 && i < LIMIT);
17 end

Fig. 7. Exploration aspect that generates multiple FAST designs by varying
a design attribute (e.g. number of kernels or mantissa) until a LUT threshold
is reached.

E. Debugging Aspect
Because the current execution model does not provide run-

time debugging of hardware designs, the easiest solution

to debug designs is to log the values of various streams

during execution. The insertion of debug statements can be

encapsulated in aspects. It is particularly important to separate

debug aspects from the original application code since debug

blocks can influence the compilation time and timing constraints

as well as the behaviour of the design. As an example, the

aspect in Fig. 8 instruments the code to log every change in

the value of a variable.

1 aspectdef WatchVar
2 select function.vref end
3 apply
4 $vref.parent_stmt.insert before
5 %{ log("[[$vref.name]]", [[$vref.name]]); }%
6 $vref.parent_stmt.insert after
7 %{ log("[[$vref.name]]", [[$vref.name]]); }%
8 end
9 condition $vref.is_out end

10 end

Fig. 8. Aspect for automatically instrumenting the code to watch any change
in the value of a program variable.

V. EVALUATION

A. RTM Implementation
We evaluate the proposed approach by implementing a high-

performance application based on the Reverse Time Migration

method for seismic imaging which is used to detect geological

structures, based on the Earth’s response to injected acoustic

waves. The technique models the propagation of injected waves

using the isotropic acoustic wave equation [13]:

d2p(r, t)

dt2
+ dvv(r)

2 �2 p(r, t) = f(r, t) (1)

We approximate the differential equation using stencil

computation to perform a fifth-order Taylor expansion in space

and first-order Taylor expansion in time.

We use FAST to implement the dataflow kernels and aspects

to generate multiple configurations for the design by creating

two kernels that are used to control the memory command read

and write streams (CmdRead, CmdWrite) and the computation

kernel (RTM).

To illustrate the potential benefits of our approach we analyse

the results of using the debugging aspect of Section IV-E.

Table III compares the number of lines of code required for

the FAST with aspect design with the equivalent MaxCompiler

implementation showing a reduction in code size of up to 42%

for the run-time reconfigurable design and a reduction in the

number of API calls (including debug calls) of up to 67%

which translate to increased productivity.

TABLE III
CODE MEASURES FOR THE RTM KERNELS COMPARING FAST AND

MAXCOMPILER.

Kernel Aspect FAST MaxCompiler
LOC LOC # API calls LOC #API Calls

CmdRead 12 26 6 59 39

CmdWrite 12 28 39 79 56

RTM Static 12 246 43 403 175

RTM RTR 12 377 91 669 275

B. Results

Results of the design space exploration using the aspect in

Fig. 7 with variable mantissa illustrate the trade-offs between

accuracy and resource usage (Fig. 9). We observe irregular,

large variations when decreasing the mantissa from 18 to

16 and 24 to 22 which is the effect of the backend tools

mapping arithmetic to a combination of both DSPs and LUT/FF

elements. The mantissa boundaries at which this optimisation

occurs are platform specific, depending on the architecture

of the DSPs. Hence, automating this optimisation via aspects

and decoupling it from the original source code makes the

application more portable and facilitates discovery of interesting

trade-off opportunities using design space exploration.

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 5 10 15 20 25
 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

no
rm

al
is

ed
 c

om
pu

ta
tio

n
pr

ec
is

io
n

(R
M

S
)

no
rm

al
is

ed
 re

so
ur

ce
 u

sa
ge

number of mantissa bits

precision
DSPs

BRAMs
LUTs

FFs

Fig. 9. Exploration of accuracy vs resource usage trade-offs using the aspect
shown in Fig. 7 with variable mantissa.

23

The DSP balancing aspect shown in Fig. 6 allows to explore

the resource trade-offs of implementing arithmetic operations

in either DSPs or LUTs and FFs (Fig. 10) and helps to avoid

over mapping on DSPs for arithmetic intensive applications.

 100

 200

 300

 400

 500

 600

 700

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 0

 1

 2

 3

 4

 5

LU
Ts

/F
Fs

 u
sa

ge

D
S

P
 u

sa
ge

arithmetic operations transformation ratio

LUTs usage for addition
LUTs usage for multiplication

LUTs usage for constant multiplication
FFs usage for constant multiplication

FFs usage for multiplication
FFs usage for addition

DSPs usage for addition
DSPs usage for multiplication

DSPs usage for constant multiplication

Fig. 10. Exploration of DSP and LUT/FF balancing for functional units
implementing a single arithmetic operation using the aspect shown in Fig. 6.

Design space exploration using the aspect in Fig. 7 with

increasing parallelism level can be used to investigate design

scalability. For example, for the described RTM implementation,

Fig. 11 shows that performance scales linearly with the number

of parallel pipelines and that significant speedups can be

obtained by the FAST dataflow design compared to the CPU

only implementation. Depending on the problem size, our

approach can be used to achieve a significant speedup over

software only versions which is comparable with the best

published FPGA results for static designs [12], [13].

1 2 3 6 12

4

10

20

40

50

70

80

100

Pipes

S
p
ee

d
u
p

Static (S) RTR (S)

Static (M) RTR (M)

Static (L) RTR (L)

Fig. 11. Scalability of the RTM dataflow design explored using the aspect
shown in Fig. 7.

Fig. 11 also shows a model of the performance benefits of

using a run-time reconfigurable implementation generated using

the proposed aspect-oriented approach. Two configurations

were created for the RTM FAST kernel. Since, in our model,

during the first half of the execution time, the backward prop-

agation and imaging functions are idle, the first configuration

requires only half the resources. Hence, the number of parallel

pipelines can be doubled, halving the execution time of the

first configuration. The speedup obtained is comparable to [12],

but the partitioning and optimisation exploration process is

automated via aspects, which increases developer productivity.

The automated process improves portability of the design,

allowing optimisations based on design space exploration to

be carried out on various platforms (hence subject to varying

resource constraints) without manual intervention.

VI. RELATED WORK

A number of dataflow languages have been developed

targeting FPGAs but also multi-core platforms. Table IV

summarises some of the important features of these languages

compared to FAST.

Lucid [14], SISAL [15], [16] and Lustre [17], are examples

of functional dataflow languages. The latter is based on a

synchronous programming model, facilitating safety verification

for critical software [18] rather than performance. The func-

tional programming style complicates the translation of existing

imperative applications and none have existing implementations

for FPGAs, so a performance comparison is not possible.

Streams-C [9] and ImpulseC [19] adopt imperative ANSI

C syntax and an execution model based on Communicating

Sequential Processes and introduce non-standard syntax and

constructs for specifying designs such as special comment

blocks which are used to annotate the C application code. The

specialised syntax makes the languages harder to integrate

with existing source-to-source translation or aspect weaving

frameworks.

Hybrid approaches such as MaxCompiler [5] separate the

CPU run-time component from the accelerated one, providing

a C run-time environment and a Java API for building dataflow

designs via meta-programming. The separation complicates the

development process, hindering sharing of design parameters

and, consequently, the design space exploration process. The

use of meta-programming simplifies design parametrisation, but

can make resulting programs harder to understand. In contrast,

the proposed approach allows the computation description,

which includes CPU and dataflow components, to be specified

using a single language and to be decoupled from design

parametrisation and other optimisation strategies which are

captured as LARA aspects. This separation of concerns results

in more intuitive and maintainable descriptions.

The use of LARA aspects in guiding the compilation

process of C applications is described in [7] and [8] but

the backend compilation targets a von Neumann architecture

(with a GPP and custom accelerator) unlike the dataflow

architecture proposed in this paper. The approach described

in [7] and [8] relies more on high-level source transformation

whereas our approach is based on a systematic design space

24

TABLE IV
FEATURE COMPARISON OF THE FAST/LARA APPROACH AND EXISTING DATAFLOW IMPLEMENTATIONS.

Language Syntax Paradigm Support Implementation Design Parametrisation Optimisation Strategies

Lucid Lucid Functional

Software Multiprocessor Manual Source
Transformation

Manual Code Revision

SISAL SISAL Functional

Lustre Lustre Synchronous

MaxCompiler C99(SW)
Java(HW)

Imperative(SW)
Dataflow(HW)

Combined CPU + FPGA

Meta-programming

Streams-C
ImpulseC C99

Imperative(SW)
CSP(HW)

Compiler Directives

FAST/LARA C99(SW/HW)
LARA(Aspects)

Imperative(SW)
Dataflow(HW)
AOP(Aspects)

Compiler Directives +
Automated Aspect-Directed Source Transformation

exploration process, which enables the analysis of more low-

level optimisations. Finally, [7] and [8] do not consider

development aspects which can be used to improve developer

productivity.

VII. CONCLUSION

This paper presents a novel development approach for

dataflow designs based on the FAST language, which supports

aspect-driven compilation. We show that this approach meets

the requirements in performance, portability, integration and

productivity. The approach has been used in producing many

optimised designs, including run-time reconfigurable designs

for seismic imaging based on the RTM algorithm which are

over 100 times faster than the corresponding software versions.

Current and future work includes aspect descriptions and

the related facilities that cover systems with different types

of accelerators, and their optimisation. Our approach can

also be extended to cover systematic development of aspect

descriptions for optimising a variety of application domains,

from Monte-Carlo simulations in finance [20] to genetic

sequence matching [21].

ACKNOWLEDGMENTS

This work is supported in part by the China Scholarship

Council, by the European Union Seventh Framework Pro-

gramme under grant agreement number 257906, 287804 and

318521, by UK EPSRC, by Maxeler University Programme,

and by Xilinx.

REFERENCES

[1] M. Flynn, O. Pell, and O. Mencer, “Dataflow Supercomputing,” in FPL,
2012.

[2] O. Mencer, “Maximum Performance Computing for Exascale Applica-
tions,” in SAMOS, 2012.

[3] J. von Neumann, “First draft of a report on the EDVAC,” Annals of the
History of Computing, pp. 27 –75, 1993.

[4] Tiobe Software, “Tiobe Programming Index,” http://www.tiobe.com/index.
php/content/paperinfo/tpci/index.html, 2012.

[5] O. Lindtjorn, R. G. Clapp, O. Pell, O. Mencer, M. J. Flynn, and H. Fu,
“Beyond Traditional Microprocessors for Geoscience High-Performance
Computing Applications,” Micro, IEEE, vol. 31, no. 2, pp. 41–49, 2011.

[6] J. M. Cardoso, T. Carvalho, J. G. Coutinho, W. Luk, R. Nobre, P. Diniz,
and Z. Petrov, “LARA: an Aspect-Oriented Programming Language for
Embedded Systems,” in AOSD, 2012.

[7] J. Cardoso, J. Teixeira, J. Alves, R. Nobre, P. Diniz, J. Coutinho, and
W. Luk, “Specifying Compiler Strategies for FPGA-based Systems,” in
FCCM, 2012.

[8] J. M. Cardoso, R. Nane, P. C. Diniz, Z. Petrov, K. Krátkỳ, K. Bertels,
M. Hübner, F. Gonçalves, J. G. d. F. Coutinho, G. Constantinides et al.,
“A New Approach to Control and Guide the Mapping of Computations
to FPGAs,” in ERSA, 2011.

[9] M. Gokhale, J. Stone, J. Arnold, and M. Kalinowski, “Stream-oriented
FPGA Computing in the Streams-C High Level Language,” in FCCM,
2000.

[10] D. Quinlan, “ROSE: Compiler Support For Object-Oriented Frameworks,”
Parallel Processing Letters, vol. 10, pp. 215–226, 2000.

[11] G. Kiczales, “Aspect-oriented Programming,” in ICSE, 2005.

[12] X. Niu, Q. Jin, W. Luk, Q. Liu, and O. Pell, “Exploiting Run-Time
Reconfiguration in Stencil Computation,” in FPL, 2012.

[13] M. Araya-Polo et al, “Assessing Accelerator-based HPC Reverse Time
Migration,” IEEE Transactions on Parallel and Distributed Systems,
vol. 22, no. 1, pp. 147–162, 2011.

[14] E. A. Ashcroft and W. W. Wadge, “Lucid, a Nonprocedural Language
with Iteration,” Communications of the ACM, vol. 20, no. 7, pp. 519–526,
1977.

[15] J. Gurd and W. Bohm, “Implicit Parallel Processing: SISAL on the
Manchester Dataflow Computer,” Proceedings of the IBM-Europe Institute
on Parallel Professing, 1987.

[16] J. McGraw et al., “SISAL: Streams and Iteration in a Single-assignment
Language,” Lawrence Livermore National Lab, Tech. Rep., 1983.

[17] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The Synchronous
Data Flow Programming Language LUSTRE,” Proceedings of the IEEE,
vol. 79, no. 9, pp. 1305–1320, 1991.

[18] N. Halbwachs, F. Lagnier, and C. Ratel, “Programming and Verifying
Real-time Systems by Means of the Synchronous Data-flow Language
LUSTRE,” IEEE Transactions on Software Engineering, vol. 18, no. 9,
pp. 785–793, 1992.

[19] “Impulse C.” [Online]. Available: http://www.impulseaccelerated.com/
products universal.htm

[20] Q. Jin, D. Dong, A. Tse, G. Chow, D. Thomas, W. Luk, and S. Weston,
“Multi-level Customisation Framework for Curve Based Monte Carlo
Financial Simulations,” in ARC, 2012.

[21] J. Arram, K. Tsoi, W. Luk, and P. Jiang, “Hardware Acceleration of
Genetic Sequence Alignment,” in ARC, 2013.

25

